On-Die Modeling

Walter Katz IBIS-Interconnect December 19, 2012

Overview

- History of Presentations
- Assumption is that the EMD concepts can satisfy the needs of the IBIS community from Die to Die
- On-Die Models
- IBIS 5.1 Limitation
- The IC Vendor Needs to Partition the 5.1 Buffer into a IBIS-ISS or Tstonefile On-Die Interconnect and a Different 6.0 Buffer
- Conclusion

History of Presentations

- Package EBD/EMD
 - <u>http://www.eda.org/ibis/adhoc/interconnect/Package_E</u>
 <u>BD_EMD.pptx</u>
- Electronic Module Description Specification, Draft 0
 - <u>http://www.eda.org/ibis/adhoc/interconnect/EMD.docx</u>
- Die-to-Die Connections in EMD
 - <u>http://www.eda.org/ibis/adhoc/interconnect/Die2Die.pdf</u>
- MCP and EMD ...
 - E-Mail sent Fri 12/14/2012 12:39 PM

On-Die Models

On-Die Interconnect (RDL or T-coil)

Bump Pad

Buffer

The IC Vendor Needs to Partition the 5.1 Buffer into a IBIS-ISS or Tstonefile On-Die Interconnect and a Different 6.0 Buffer

For AMI Modeling ...

7

- The IC Vendor most likely partition the On-Die Interconnect and Buffer at a point where he can use a Legacy IBIS [Model] and a Tstonefile for the On-Die Interconnect
- The Legacy IBIS [Model] should be LTI
 - Rx Power Clamp and Ground Clamp are linear
 - Can be represented by an R to ground
 - Tx Pullup and Pulldown Curves are linear and same slope
 - Can be represented by a Voltage Swing, Series
 Impedance, and a Rise Time
- On-Die Interconnect may be associated with [Model] instead of [Pin]

For Non AMI Modeling

- The IC Vendor most likely partition the On-Die Interconnect and Buffer at a point where he can use a Legacy IBIS [Model] and a Tstonefile for the On-Die Interconnect
- The Legacy IBIS [Model] has no constraints
 - C_comp will be smaller because it should not include the capacitance in the On-Die Interconnect
 - IV curves will be different because they do on include the resistance in the On-Die Interconnect

Conclusion

This presentation should at least help us use a common language and understanding of how to partition the On-Die Interconnect and Buffer modeling.

