Purpose

- The following slides summarize rules and issues for the new mixed-mode format as sketched in recent on-line discussions
- The summary "bullet points" here will be edited in real time during IBIS-Interconnect meetings
- Once the summary rules are agreed by consensus, formal text implementing them will be written

An Example...

- From Bob Ross
- For a 6-port example:
 - -D2,4
 - D5,6
 - -C2,4
 - -C5,6
 - X1
 - X3
- The generalized matrix is:
 - Xd2_4,d2_4 Xd2_4,d5_6 . Xd2_4,c2_4 Xd2_4,c5_6 . Xd2_4,1 Xd2_4,3
 - Xd5_6,d2_4 Xd5_6,d5_6 . Xd5_6,c2_4 Xd5_6,c5_6 . Xd5_6,1 Xd5_6,3
 - Xc2_4,d2_4 Xc2_4,d5_6 . Xc2_4,c2_4 Xc2_4,c5_6 . Xc2_4,1 Xc2_4,3
 - Xc5_6,d2_4 Xc5_6,d5_6 . Xc5_6,c2_4 Xc5_6,c5_6 . Xc5_6,1 Xc5_6,3
 - X1,d2_4 X1,d5_6 . X1,c2_4 X1,c5_6 . X1,1 X1,3
 - X3,d2_4 X3,d5_6 . X3,c2_4 X3,c5_6 . X3,1 X3,3

Clarifying the Example

This drawing is arbitrary, as no specific "sides" or arrangements are implied by the example.

Multiple drawings are possible, as topologies are non-unique

- Mixed-mode only of interest for ports (2,4) and (5,6)
 - Ports 1 and 3 are expressed only in terms of single-ended data
- Stimulus, response ordering appears identical to existing definitions
 - E.g., SCD12: differential port 2 stimulus, common mode port 1 observed
- Not all relationships are defined!
 - This is unique to this proposal (contra other proposals)
 - Pro: flexible ordering; compact, particularly for larger systems
 - Con: SE data critical when key MM relationships are missing

Rules and Questions

- Single-ended data not required
- MM: Each SE data relationship appears only once
- MM: Each C/D data relationship appears only once
- Each port may "participate" in only one MM pair
 - Of each type: C, D
- Both C & D required for MM relationships for every "participating" pair
- SE port *numbers* used across entire file
- Mixed mode pair ordering is always +,-
- How are the positions of the data pairs defined?
 - Row, column ordering of *ports* not defined by the specification
 - A table of ports will be made explicit in each file
- Ports may not "participate" in both SE and MM pairs

New Syntax

- [Mixed-mode Order]
 - A vector of ports and/or port relationships of interest
 - The vector determines the content and row and column order to be used in [Mixed-mode Data] (see below)
 - Single-ended port numbers are used throughout the file
 - Single-ended ports are indicated by "S" followed by an integer
 - Common-mode MM port relationships are indicated by "SC" and two integers, separated by a comma
 - Differential-mode MM port relationships are indicated by "SD" and two integers, separated by a comma
 - Relationships are separated by semicolons (whitespace optional)
 - For example, S5; SD3,2; SC3,2
 - Ports may not appear in more than one D or one C relationship
 - Only S-parameter data is defined today
 - Other relationships may be added freely in future revisions
 - Every port must be included under [Mixed-mode Order]

New Syntax (2)

- [Mixed-mode Data]
 - Network data describing the electrical relationships between ports, in single-ended and/or mixed-mode terms
 - Only ports and port relationships mentioned explicitly under [Mixed-mode Order] may appear in [Mixed-mode Data]
 - The order of ports/port relationships in [Mixed-mode Order] determines the arrangement of the matrix in [Mixed-mode Data]
 - [... Order] row vector multiplied by [... Order] column vector
 - See example
 - Frequency information, spacing and other formatting identical to Touchstone 1.0 single-ended matrices

Examples

- Three-port device e.g., a balun
 - D1,2
 - 3
 - C1,2 {C1,3 would be prohibited}
- The generalized matrix is:

Examples

• Five-port device - e.g., differential buffer and supply

The generalized matrix is:

Reference Impedances

- Proposed Reference Impedance Rules
 - For single-ended (SE) ports used in mixed-mode combinations C and/or D, both ports <u>must</u> use the same single-ended [Reference Impedance] values
 - [Reference Impedance] contents are single-ended only
 - Differential mixed-mode relationships therefore assume termination of 2*impedance connected across terminals
 - Common-mode mixed-mode relationships therefore assume termination impedances connected to the same reference node (see below)

References - Nodes vs. Ports

- Ports and Nodes are Not Identical
 - Ports are combinations of nodes and references
 - Touchstone permits three reference schemes, all implicit
 - Each port has its own unique reference
 - Each port shares a reference with all other ports in that matrix
 - Each port shares a reference with all other ports in all matrices/interconnects (universal ground)
 - Should Touchstone 2.0 limit referencing to one of these?
 - [Port Referencing] keyword
 - Three arguments: Unique, Shared, Universal
 - Keyword determines both circuit usage of matrix data AND some mathematical assumptions about matrix data
 - What does this do to common-mode mixed-mode data?
 - How are reference impedances/terminations connected?
 - Example: For 5x5 matrix data...
 - "Unique" maps to 10 terminal device
 - "Shared" maps to 6 terminal device
 - "Universal" maps to 5 terminal device with GND SPICE assumption

