Purpose

- The following slides summarize rules and issues for the new mixed-mode format as sketched in recent on-line discussions
- The summary "bullet points" here will be edited in real time during IBIS-Interconnect meetings
- Once the summary rules are agreed by consensus, formal text implementing them will be written

An Example...

- From Bob Ross

- For a 6-port example:
- D2,4
- D5,6
- C2,4
- C5,6
- X1
- X3
- The generalized matrix is:
- Xd2_4,d2_4 Xd2_4,d5_6 . Xd2_4,c2_4 Xd2_4,c5_6 . Xd2_4,1 Xd2_4,3
- Xd5_6,d2_4 Xd5_6,d5_6 . Xd5_6,c2_4 Xd5_6,c5_6 . Xd5_6,1 Xd5_6,3
- Xc2_4,d2_4 Xc2_4,d5_6 . Xc2_4,c2_4 Xc2_4,c5_6 . Xc2_4,1 Xc2_4,3
- Xc5_6,d2_4 Xc5_6,d5_6 . Xc5_6,c2_4 Xc5_6,c5_6 . Xc5_6,1 Xc5_6,3
- X1,d2_4 X1,d5_6. X1,c2_4 X1,c5_6. X1,1 X1,3
- X3,d2_4 X3,d5_6 . X3,c2_4 X3,c5_6 . X3,1 X3,3

Clarifying the Example

$$
\begin{aligned}
& \text { This drawing is arbitrary, as no } \\
& \text { specific "sides" or arrangements } \\
& \text { are implied by the example. } \\
& \text { Multiple drawings are possible, } \\
& \text { as topologies are non-unique }
\end{aligned}
$$

- Mixed-mode only of interest for ports $(2,4)$ and $(5,6)$
- Ports 1 and 3 are expressed only in terms of single-ended data
- Stimulus, response ordering appears identical to existing definitions
- E.g., SCD12: differential port 2 stimulus, common mode port 1 observed
- Not all relationships are defined!
- This is unique to this proposal (contra other proposals)
- Pro: flexible ordering; compact, particularly for larger systems
- Con: SE data critical when key MM relationships are missing

Rules and Questions

- Single-ended data not required
- MM: Each SE data relationship appears only once
- MM: Each C/D data relationship appears only once
- Each port may "participate" in only one MM pair
- Of each type: C, D
- Both C \& D required for MM relationships for every "participating" pair
- SE port numbers used across entire file
- Mixed mode pair ordering is always +,-
- How are the positions of the data pairs defined?
- Row, column ordering of ports not defined by the specification
- A table of ports will be made explicit in each file
- Ports may not "participate" in both SE and MM pairs

New Syntax

- [Mixed-mode Order]
- A vector of ports and/or port relationships of interest
- The vector determines the content and row and column order to be used in [Mixed-mode Data] (see below)
- Single-ended port numbers are used throughout the file
- Single-ended ports are indicated by " S " followed by an integer
- Common-mode MM port relationships are indicated by "SC" and two integers, separated by a comma
- Differential-mode MM port relationships are indicated by "SD" and two integers, separated by a comma
- Relationships are separated by semicolons (whitespace optional)
- For example, S5; SD3,2; SC3,2
- Ports may not appear in more than one D or one C relationship
- Only S-parameter data is defined today
- Other relationships may be added freely in future revisions
- Every port must be included under [Mixed-mode Order]

New Syntax (2)

- [Mixed-mode Data]
- Network data describing the electrical relationships between ports, in single-ended and/or mixed-mode terms
- Only ports and port relationships mentioned explicitly under [Mixed-mode Order] may appear in [Mixed-mode Data]
- The order of ports/port relationships in [Mixed-mode Order] determines the arrangement of the matrix in [Mixed-mode Data]
- [... Order] row vector multiplied by [... Order] column vector
- See example
- Frequency information, spacing and other formatting identical to Touchstone 1.0 single-ended matrices

Examples

- Three-port device - e.g., a balun
- D1,2
- 3
- C1,2 \{C1,3 would be prohibited\}
- The generalized matrix is:

$$
\begin{array}{lll}
-X d 1 _2, d 1 _2 & \text { Xd1_2,3 } & \text { Xd1_2,c1_2 } \\
-X 3, d 1 _2 & X 3,3 & \text { X3,c1_2 } \\
-X c 1 _2, d 1 _2 & \text { Xc1_2,3 } & \text { Xc1_2,c1_2 }
\end{array}
$$

Examples

- Five-port device - e.g., differential buffer and supply

$$
\begin{aligned}
& -\mathrm{D} 1,2 \\
& -3 \\
& -4 \\
& -5 \\
& -\mathrm{C} 1,2
\end{aligned}
$$

- The generalized matrix is:

$$
\begin{array}{lllll}
- \text { Xd1_2,d1_2 } & \text { Xd1_2,3 } & \text { Xd1_2,4 } & \text { Xd1_2,5 } & \text { Xd1_2,c1_2 } \\
- \text { X3,d1_2 } & \text { X3,3 } & \text { X3,4 } & \text { X3,5 } & \text { X3,c1_2 } \\
- \text { X4,d1_2 } & \text { X4,3 } & \text { X4,4 } & \text { X4,5 } & \text { X4,c1_2 } \\
- \text { X5,d1_2 } & \text { X5,3 } & \text { X5,4 } & \text { X5,5 } & \text { X5,c1_2 } \\
- \text { Xc1_2,d1_2 } & \text { Xc1_2,3 } & \text { Xc1_2,4 } & \text { Xc1_2,5 } & \text { Xc1_2,c1_2 }
\end{array}
$$

Reference Impedances

- Proposed Reference Impedance Rules
- For single-ended (SE) ports used in mixed-mode combinations C and/or D, both ports must use the same single-ended [Reference Impedance] values
- [Reference Impedance] contents are single-ended only
- Differential mixed-mode relationships therefore assume termination of $2 *$ impedance connected across terminals
- Common-mode mixed-mode relationships therefore assume termination impedances connected to the same reference node (see below)

References - Nodes vs. Ports

- Ports and Nodes are Not Identical
- Ports are combinations of nodes and references
- Touchstone permits three reference schemes, all implicit
- Each port has its own unique reference
- Each port shares a reference with all other ports in that matrix
- Each port shares a reference with all other ports in all matrices/interconnects (universal ground)
- Should Touchstone 2.0 limit referencing to one of these?
- [Port Referencing] keyword
- Three arguments: Unique, Shared, Universal
- Keyword determines both circuit usage of matrix data AND some mathematical assumptions about matrix data
- What does this do to common-mode mixed-mode data?
- How are reference impedances/terminations connected?
- Example: For 5x5 matrix data...
- "Unique" maps to 10 terminal device
- "Shared" maps to 6 terminal device
- "Universal" maps to 5 terminal device with GND SPICE assumption

