
Comments to Touchstone 2.0 proposals for MM support 
 
Vladimir Dmitriev-Zdorov, Mentor Graphics Corporation 
 
Support for mixed mode parameters is a toughest thing for users. Mess up in terminology 
adds to the pain. This is not about syntax only. There are some basics behind definitions 
that must be clearly understood when creating and using such parameters. A white paper 
is needed to define what can and what cannot be supported.  
 

1. Terminals and ports 
 
The model has T terminals and P ports. The terminal could be thought as the subcircuit’s 
external node. The set of voltages and currents we use is defined by ports. Each port is 
created by pair of terminals. For every port, we can define port voltage, e.g. V1 and port 
current I1. Note, that “return” port current I1

’ should always be equal I1. Later we’ll refer 
this as a condition of ‘regularity’. In most cases, this return current is just ‘assumed’. 
 
The number of ports determines the number of external variables constituting voltage 
current vector (for Y/Z parameters) or incident/reflected wave vector for S-parameters. 
The number of ports also defines the size of the matrix, either S, Y or Z, that is PxP. 
 

 
  Fig.1 
 
Figure 1 exemplifies two cases. First (a) is 8-terminal 4-port model. Second (b) is 5-
terminal 4-port model (here, one terminal is a common reference). 
 

2. Ports with common or individual reference. ‘Fully defined’ or ‘under-defined’ 
models 

 
In the example Fig.1 (a) above, each port voltage is measured with respect to its own 
‘reference’ terminal. Same can be said about incident/reflected wave in case of S-
parameters. The excitation to each port is applied in the same way. In the case (b), all 
ports have the same common reference. All measurements ‘across’ are made relative to 
this reference. 

 

~ ~

~

T1 

T2 

T3 

T4 

T5

T6

T7

T8

P1 

P2 

P3

P4

I1 

I1
’ V1

V1

I1

(a) (b) 



 
For a given number of terminals, T, maximum T-1 independent voltages and T-1 number 
of independent currents can be defined. In case (b), with 5 terminals and 4 ports, we have 
the largest possible number of independent variables and also relations between them. 
The case P=T-1 produces ‘fully defined’ model. With its PxP parameter matrix, we can 
use this subcircuit in any configuration, with no limitation on the topology for external 
circuitry. 
In case (a), we create 4x4 matrix to describe 8-terminal subcircuit, hence, it is not ‘fully’ 
defined. This case exemplifies the largest uncertainty: P = T/2. 
‘Fully defined’ are only models that create T-1 independent relations for T-terminal 
model. In particular, fully defined is the model with all ports having common reference, 
or the model whose matrix can be formed from the former by row and column 
permutations. Inversely, if we have T-1 independent relations for T-terminal model, it can 
always be transformed into the model with all ports having the common reference. 
Between two extremes (no common reference and a single common reference) there are 
intermediate cases when one group of ports has its own common reference, while other 
group(s) have another reference. 
 
 

4. Condition of ‘regularity’ 
 
The 4-port 8-terminal model on the left of Fig.1 is not ‘fully defined’, hence, not all 
configurations are allowed when we include this model into the design. Only those are 
allowed, for which we ensure that nn II ≡' , i.e. condition of regularity satisfied for all 
ports. 
 

 
 Fig.2 Legal and illegal model usage.  
 
The crossed are connections that violate regularity for ports 1 and 2, and ports 1 and 3. 
 
If the model parameters were measured/created with certain port selection, the model can 
only be used in such configuration where regularity is satisfied for all defined ports. That 
is, the way the model is created must be consistent with the way it is used. 
Note, that ‘fully defined’ model, with P=T-1, and common reference, always satisfies 
‘regularity’. 
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5. Differential/common mode components can be created from a pair of ‘standard 

mode’ ports having the same reference terminal and identical normalizing 
impedance 

 
This requirement about common reference terminal follows from regularity. 

 
 Fig.3 Two ports with common reference produce common and differential mode 
 
As we see from Fig.3, if two ports have common reference (a), and the externally applied 
voltages are the same, then two sources can be combined into one common mode source. 
If the ports have similar input characteristics and the reference impedances are same, then 
the port voltages also become identical common mode voltages (b). As we see, the 
reference resistances become parallel for common mode and therefore the equivalent 
resistance for the common mode halves. If the voltages applied in (a) are equal but 
opposite, the input properties of the ports are similar and reference impedances are same, 
in Fig.3 (c) the current circulates in the loop and does not go into the reference terminal. 
Here we get differential mode and the reference impedance in the current loop doubles. If 
the input properties of ports are not the same, the port voltages in (b) are not exactly the 
same because there is a conversion from common to differential mode. Similarly, in (c) 
the fraction of the current leaves the loop and goes into reference terminal thus creating 
common mode component from differential input. 
 
Note, that if the originating ports had individual reference terminals, the connections 
shown in Fig.3 (b) and (c) are not possible. In [4], pages 4-5 the ports are shown as 
having individual reference terminals, although they should have common. 
 
Another conclusion: reference impedances of the pair of ‘standard mode’ ports must be 
the same to create the differential and common mode pair. That is, if the originating 
standard ports have different normalizing impedance, re-normalization should be done 
first (before creating the touchstone file), to make them equal and only after that mixed 
mode parameters can be defined. 
Hence, it is logical to require that under option line (#) or [Reference] keyword we define 
the reference impedances that are for the originating “standard” mode only. In case or 
[Reference], they should be equal for port pairs participating in producing mixed mode 
parameters. 
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6. Two port variables can create a pair containing of differential and common mode 
variables (i.e. mixed mode). Each port cannot be involved into more than one pair 
of ports that create differential/common mode 
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 describe port variables of a certain single type (voltages, currents, 

incident or reflected waves) for 4-port model. If ports 1 and 2 have common reference 
terminal, the ‘standard’ mode variables for ports 1 and 2 can be replaced by the pair of 
similar type (voltage, current, etc.) differential/common variables, originating from this 

pair of ports. Vector is replaced with another vector: 
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remains the same. The low indexes indicate the ports of origination that are ports 1 and 2. 
This denotation is consistent with [1]. There, the common and differential mode variables 
bear indexes showing their originating standard (sometimes called single-ended) ports. 
Then, if the ports 3 and 4 also have common reference terminal, the variables can also be 

transformed into
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the same common reference terminal. It only has to be common within each pair. 
If other requirements stated above are true, the following pair mapping should be 
allowed, as shown in (a) and (b) in Fig.4 below. The mapping (c) should not be allowed 
since port 2 becomes involved into two STD to MM transformations. 
 

 
Fig.4. Two legal pair mappings (a), (b) and illegal (c). 
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7. Indexing variables and matrix components 
 
Following the idea of [1], for each mixed mode variable we need to retain indexes 
showing the originating standard mode ports. Since each matrix component relates two 
variables (one input, e.g. incident wave to one output, then reflected wave), it should 
have two sets of indexes from both variables. 
Example: 

2,1Da  - incident wave, differential component originating from port 1 and 2. 

8,5Cb  - reflected, common mode, originating from ports 5 and 8. 

7,6_8,5 DCS - matrix component that relates: 7,67,6_8,58,5 DDCC aSb =  

3_8,5 XCS - matrix component that relates: 33_8,58,5 aSb XCC = . Here, the input is a standard 
mode incident wave at port 3, the output is reflected common mode originated from ports 
5 and 8. 
Fortunately, as will be shown in the next section, we don’t need to define the meanings of 
the matrix components in the touchstone file, as proposed in [5]. Only variable types in 
vector should be defined. Otherwise, I cannot think of what would happen if we decided 
to define mixed mode data for 200+ port S-parameter port (that we actually simulated 
some time ago, but in standard mode). Can we allow defining 50,000 matrix components 
then? 
 
 

8. Defining types and ordering of port variables 
 
What do standard mode S-parameters define? They define the relation between the 
incident and reflected vector, where the vector components on left and right are 
associated with identically ordered set of ports. 

For example, the relation [ ]
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std  does not, because the ordering in the vectors is different. 

Naturally, we have to require the same from the mixed mode matrix, or matrix that 
related non-uniform sets of variables, containing both mixed mode and standard mode 

types. For example, this could be: [ ]
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Once the ordering is the same on both sides of the relation, there is no more ambiguity in 
defining the meaning of the matrix components, too. This was also noted in [4]. 
From here is follows that we need to define the meaning of the vector variables only. The 
type, as to whether it is incident or reflected, should not be defined, because the ordering 
there is identical. 
 
For example: 
 
D1,2 
D3,4 
C1,2      
C3,4 
X5  ! standard mode, port 5 
X6  ! standard mode, port 6 
 
Something like this should be present in the touchstone file. I don’t insist on the 
particular syntax, I do care about having the condensed yet sufficient info. Of course, 
commas could be replaced with underscores and so on. 
 
Another question is whether we need to have this under comments. This could potentially 
cause problem if mistakenly the come patterns in the ‘regular’ comments will trigger the 
mess. What about using a keyword for the section defining the port type/ordering? 
 
 
Example 
 
Is the above notation sufficient to allow unambiguous transformation into the standard 
mode? Yes, let’s show this. Using the example notation above, we understand that it 
implies the relation: 
 
    ASB ˆˆˆ = ,       (1) 
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Hence, we assume that it is the matrix Ŝ  that was defined in the touchstone file. 
However, we want to restore the matrix S for the standard mode that would satisfy the 
relation: 
    SAB =       (2) 
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Transformation of the matrix Ŝ  into S should be done in two steps. First, we transform it 
into permuted standard mode matrix pS  that relates two standard mode vectors: 
 
    ppp ASB = ,      (3) 
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 Note that here each pair of differential/common mode variables is converted 
independently into the pair of the corresponding standard mode variables, where the latter 
keep same positions in the vectors. Second step is the required permutation itself (if we 
need it). 
 
Let us consider the first step. As we know (see e.g. [2, (3)]) the differential/common 
incident waves are related to standard waves as 
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participates in similarity transformation: 1−= MMSS stdmm  that converts 2x2 standard 
mode block of S-matrix for ports 1 and 2 into the mixed mode block of the same size. 
Since the matrix M is orthogonal, its inverse is the same as its transpose that simplifies 
the transformations. Of course, standard mode block can also be expressed through the 
mixed mode as: MSMMSMS mm

T
mmstd == −1 . For our example, the transformation 

matrix M should be composed from such 2x2 blocks, by accounting the position of 
diff/common pairs in the vector. Hence, it becomes: 
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xM . Here, we see the elements of the 2x2 blocks in 

positions (1,1), (1,3), (3,1), (3,3) and also in (2,2), (2,4), (4,2) and (4,4), with γδ = . This 
is because the pair D1,2 and C1,2 in our vector – as in (1) - occupies positions 1 and 3 
while the pair D3,4 and C3,4 occupies the positions 2 and 4. Since there are standard 
mode components in the vector in positions 5 and 6, the matrix has ones on its diagonal 
there. With matrix xM defined, we can find the permuted standard mode matrix: 

   x
T
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Now, we can find the permutation matrix. The standard but permuted vectors in (3) can 
be expressed through vectors in (2) as: 
 
   PAAp = , PBBp = ,      (5) 
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Combining (3), (5) we have PASPB p=  from where 
 
    APPSAPSPB pp )()( 1 == −    (6) 
 
since permutation matrix is self-inverse. Comparing (6) and (2) we see that  
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The last relation gives us the required transformation from given combined mixed-
standard mode into the properly ordered standard mode. Note, that the transformation 
was derived exclusively from the notations [D1,2  D3,4 C1,2 C3,4 X5  X6] given above. 
 
Finally, we need to mention that the first transformation, (4) from original to permuted 
standard mode type, does not require any changes in port reference impedances, while the 
second, (6) (pure permutation) require identical permutation for the list of reference 
impedance, that we keep under [Reference] keyword. 



 
 
 

9. Mapping sides A and B to port list 
 
The issue is raised by Walter. Indeed, even for 4 port model we often do not know if the 
mixed mode parameters pair ports 1-2 and 3-4, or 1-3 and 2-4. With the proposed 
notation, this problem should be eliminated at least partially. For example, when we see 
D1,2 and C3,4 it means that the ports (1, 2), (3, 4) - in standard, “single ended” notation - 
make pairs. If we know that there are two sides, we can conclude that the ports 1, 2 are on 
one side and 3,4 are on the opposite side. Further details – if for example we care about 
flipping the model horizontally, or if we have more than two pair of ports - can be 
provided additionally in comments. In general, if we need to describe sides, we need first 
to define what the side means. 
More importantly, the ‘siding’ issue is irrelevant to the mixed mode issue. It also exists 
for standard modes, too. Therefore, we may consider the side mapping separately from 
standard/mixed mode problems. 
In the standard mode, we do not have indexes showing paired ports that may complicate 
the port-side mapping. Technically, the port pairs as a rule can be easily detected by 
analyzing the matrix values, e.g. S12/S34 versus S13 and S34. If any, what about 
defining top/bottom as well? If we decide to do this, then only for 4-ports that can 
represent differential channel. 
 

10. Transforming matrices and non S-type parameters 
 
Transformation for matrices, as well as for variables are given in some well recognized 
sources, e.g. [1-3]. We need to follow them when interpreting the data. 
The conversion that links standard and mixed mode S-parameter matrix could be one 
from [3, (5-7)] or in [4]. 
 
It should be noted however that the matrix transformations defined there are for S-
parameters only. The conversion between standard and mixed mode Y and Z parameters, 
consistent with definition of the common/differential mode voltage and current, as given 
in [1, (2)] and in [4], will require a different matrix. 
 
As we already showed, the relation between the standard and mixed mode S-parameter 
block is 
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Here, the input vector is incident and the output is reflected wave. For them both, the 
mixed mode can be expressed identically, with same matrices from the standard 
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However, for Y and Z-parameters, this is not the case. For example, for Y-parameters, 
input is the voltage vector while output is the current vector. The standard/mixed mode 

voltage vectors – as we know - are related by ⎥
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transformation matrices are different. 
 
This asymmetry inevitably changes the transformation between standard and mixed mode 
matrices for Z and Y parameters. Omitting the details, we just put the block 
transformations. They are: 
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Because of this, we need to either (a) additionally provide explicit relations for Y/Z 
matrix transformations, or (b) do not support mixed mode non-S type parameters in order 
to avoid problems it their interpretations. 
 
Summary 
 

- the user should be advised about the proper usage of the model, ensuring that the 
way it is included into design is consistent with the way it was created, and no 
regularity violations appear 

- the mixed mode components (diff/common) can only be created from port pairs 
with have common reference terminal and identical reference impedance 

- under [Reference] keyword we provide reference impedances for standard mode 
only 

- each port may participate only in one STD/MM conversion. The port pairs cannot 
‘overlap’, as shown in Fig.4 

- indexes for mixed mode variables must retain the originating port numbers, that 
allows proper deciphering MM back into STD. Mapping “sides” is then simplified 
for MM parameters 



- the input and output vectors must have identical ordering and matching types of 
variables. This eliminates the need for defining the matrix components. Only 
mode types X/C/D and originating port pairs for C/D have to be defined 

- it is better to avoid putting this info into comments, maybe consider keyword 
definition instead 

- published MM/STD transformations cover S-parameter matrix only. Do we need 
to use them for Y/Z parameters? If yes, then appropriate transformation matrices 
should be provided 

- extended user manual is needed for touchstone format users, to explain possible 
caveats and provide mathematical relations. A good starting point could be 
publications [1-3] 
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