
1 CADENCE DESIGN SYSTEMS, INC.

Proposal for modeling advanced SERDES
Discussion on API

IBM, Cadence

July 2006

2

Key Modeling Requirements

• Ability to capture complex algorithms
– DSP / Filter optimization: CDR, DFE, …

• Minimal model development time

• High accuracy (hardware correlated) with minimum simulation time

• Protection of IP (Silicon vendors)

• Architectural modeling
– Ability to model & evaluate IP before silicon is developed (pre-silicon)

• Integration with PCB design environment

• Interoperability of models from different IP/IC Vendors

• Supported by EDA vendors

• Available as a public standard

• Available as soft IP for measurement vendors

3

Overview of this proposal

• Chip to chip modeling is infeasible with device level simulators of
today

• Chip to chip communications have strong DSP content

• Algorithm modeling platform is a natural choice for chip to chip
communication

– Offers high performance for jitter analysis and budgeting

– Offers measurements correlation capability

– Enables compliance testing

• Algorithm model platform is prevalent in IC companies

• Proposal standardizes interface to algorithm platform

4

Proposed Solution & Architecture

• Allow IC companies to develop “executable” algorithm based models that plug into
the simulator through a dynamically linked library (dll)

• Simplest possible public API (C-wrapper)
• Algorithmic Models in a dll

– Can capture and encapsulate complex algorithms
– Can add Jitter
– Can include CDR modules
– Protects IP without tool-specific encryption, no simulator specific encryption needed
– Provides SERDES and EDA vendor independent interoperability if standardized
– Can complete measurement loop – pluggable soft IP

Waveform
Processing

New WaveformsRx
DLL
Libs

Tx RxCHANNEL

XTALK
CHANNEL

XTALK
CHANNEL

EDA vendor

IC Co. IP

5

Measurement Loop

Measurement Vendor

EDA Vendor

dll
IC Vendor

6

Simple API
• Init

– Initialize and optimize channel with Tx / Rx Model
– This is where the IC DSP decides how to drive the system: e.g., filter

coefficients, channel compensation, …
– Input: Channel Characterization, system and dll specific parameters from

configuration file
– bit period, sampling intervals, # of forward/backward coefficients, …

– Output: Modified Channel Characterization, status
• GetWave

– Modify continuous time domain waveform [CDR, Post Processing]
– Input: Voltage at Rx input at specific times
– Output: Modified Voltage, Clock tics (dll specific), status

• Close
– Clean up, exit

Parameters passed by the system simulation platform are in red

7

Simulator – Model interaction sequence

1. Characterize Channel (convolution
engine)

2. Pass Impulse response to Tx & receive
modified impulse response from Tx (Init
call)

3. Send modified impulse response to Rx &
receive Rx modified impulse response
(init call)

4. Bit by Bit simulation

5. Send waveform data to Rx dll (GetWave
call)

6. Close when done

8

Rx_init

Tx RxCHANNEL

XTALK
CHANNEL

XTALK
CHANNEL Pass characterization

in matrix ‘a’

DSP algorithms
modify characterization

Characterized Channel

Internal storage

Send modified char back
(modified matrix ‘a’)

9

Rx_getwave

Tx RxCHANNEL

XTALK
CHANNEL

XTALK
CHANNEL

Z-1 Z-1 Z-1

CDR

DSP Filter

Wave_in (vector)

Filtered wave_in

Clock vector

10

API Call Params

Note: items in [] are optional and can be 0(null)

• long rx_init (double *a, long row_size, long col_size, double bitp, double tr,
double tf, void **pdll_server_param_obj, void *dll_client_param, char
*dllcontrol, [genchdllmsg_type **msg])

– Input: Channel Characterization, system and dll specific parameters from config file

– bit period, sampling intervals, # of forward/backward coefficients, …

– Output: Modified Channel Characterization, status

• long rx_getwave (double *wave_in, long size, double dt, double *clk, void
*dll_server_param_obj, void *dll_client_param, [genchdllmsg_type **msg])

– Input: Voltage at Rx input at specific times

– Output: Modified Voltage, Clock tics (dll specific), status

• long rx_close (void **ptr_2_dll_server_param_obj)

– Clean up, exit

11

Rx_init
long rx_init (double *a, long row_size, long col_size, double pulse_width, double tr,

double tf, void **pdll_server_param_obj, void *dll_client_param, char *dllcontrol,
[genchdllmsg_type **error_msg])

Call:

long status = rx_init(…), status >=1 for success, 0 for failure

a = matrix of row_size x col_size
col_size = (number of channels + 1)

- first column is time
pulse_width = pulse width of the characterization
tr, tf = rise and fall times, useful for synthesizing filters
pdll_server_param_obj – place holder for data structure created by the dll. dll’s can use this to store

and retrieve additional information
dllcontrols – this is string in a tree data base format and will contain information like dll version

number. It can be also used by the dlls to manage additional features and controls
dll_server_obj – This is an optional argument. The dll server use this place holder to create a dll

structure for its own use. In this way the dll need not use global variables.
error_msg – optional error message
The dll should not free memory of a/txids

12

Rx_init – input matrix indexing

a, the input matrix is a one dimensional double array

– The index into the array is given by

index = row_size * j + i

where i is the row index and j is the col index. i and j start from 0

- ‘a’ is the normalized impulse response i.e. it is the channel response
for a unit pulse

13

Rx_getwave

long rx_getwave (double *wave_in, long size, double dt, double *cdrclkbuff, void
*dll_server_param_obj, void *dll_client_param, [genchdllmsg_type **error_msg]))

Call: long status = rx_getwave (..)

wave_in – vector of input voltage
dt – sampling intervel for wave_in
size – the size of wave_in vector
On return the rx_getwave replaces wave_in with the computed wave_out
cdrclkbuff – This is the vector of clk edges with a size of ‘size’, same as the wave_in buffer.If the dll

includes a cdr function , you can fill this vector with the expected edge times. If there is no cdr
function, ignore this vector. This vector will be initialized with a ‘-1’ at the 0th position. If the vector
is not modified i.e. on return if the caller still finds the -1, the caller will conclude there is no cdr
function.

The times in the vector should be referenced to the start of the cdrclkbuff. For example
cdrclkbuff = [30n 30.2n 30.4n 0 0 ….]

Means that the only 3 clock edges were found at 30n, 30.2n and 30.4n
All memory will be freed by the caller

14

Sample models

1. chffefilt

– Optimized Feed Forward Filter

2. chdfefilt

– Decision Feedback Filter

3. chfbefilt

– Feed back equalization

4. chcdr

– Clock and Data Recovery unit with
Proportional Integral (PI) control

Z-1 Z-1

+

w0 w1

-FIR

FIR

W’sZ-1 Z-1

+
w0 w1

WW

Z-1 Z-1 Z-1

15

Sample FFE Filter

• Example FFE Filter

• Multi tap FFE

• MMSE Optimize FFE weights for
given channel

• Apply FFE bit by bit

Z-1 Z-1

+

w0 w1

(chffefilt (fwd 5)(pulsein ffein.txt) (pulseout ffeout.txt))

Adjustable number of taps

dll Name Parameters
5 taps

Read pulse from ffein.txt
Write pulse from ffeout.txt

MMSE: Minimum Mean Square Error

16

Sample DFE Filter

• Multitap FFE+DFE

• MMSE* optimization for FFE

• Zero forcing DFE

• Modify pulse response

-FIR

FIR

W’s

chdfefilt (bwd 12)(pulseout dfeout.txt))
Adjustable no of taps

Dll Name Parameters

Backward # DFE taps

MMSE: Minimum Mean Square Error

17

Sample CDR model

• Clock and Data
Recovery unit

• Proportional + integral
error control

• Adjustable resolution

• Jitter tolerance

CDR

frequency

Log(ui)

SONET

(chcdr (res ..) (corr_freq) (integ_corr_freq ..))

dll Name
Parameters

CDR resolution

18

Bathtub Curve
- no filter vs. chfbefilt

19

Bathtub Curve
- no cdr vs. with cdr

20

Chffefilt code

extern long rx_init (double *a, long row_size, long col_size, double bitp, double tr,
double tf, void **pdll_server_param_obj, char *dllcontrols, void *dll_client_param,
genchdllmsg_type **msg)

{
,,,,,,,,,,,,

/* get the filter, pass the input matrix ‘a’ */
status = dotaps (dll_object, a, row_size, col_size, bitp, tr, tf);
DONE:
if(!status)

{ genDestroy (dll_object); dll_object=0;}

if(msg)
printlogo (dll_object, msg);

if(status > 1)
destroy (dll_object);

else if(pdll_server_param_obj)
*pdll_server_param_obj = dll_object;

return status;
}

21

Chffefilt - dotaps

/* create taps using MMSE */

taps = genfilttbl_fwdcoeff (mx, fwd, bitp, trm, 0.0, offset, fbitp,
forcepulse, &resp, &error, nonaveraging, &snr);

22

Chffefilt: rx_getwave

extern long rx_getwave (double *wave_in, long size, double dt,
double *cdrclkbuff, void *dll_server_param_obj, void
*dll_client_param, genchdllmsg_type **msg)

for (i=0; i<size; i++)
{
double volt=0;

if (dll_object->time <= 0) /* first time intitialize dc */
dll_object->td = genfilttd_initstd (dll_object->taps, wave_in[i]);

volt = genfilttd_y (dll_object->td, dll_object->time, wave_in[i]);

wave_in [i] = volt;

dll_object->time += dt;
}

Apply the filter, Modify the input wave vector

23

Chcdr:

extern long rx_getwave (double *wave_in, long size, double dt,
double *cdrclkbuff, void *dll_server_param_obj, void
*dll_client_param, genchdllmsg_type **msg)

for (tedge += bitp; tedge < tlast; tedge += bitp)
Start early/late determination

cdrclkbuff[edge_id++] = (tedge-tstart);

Return clock information

24

Summary

• Top down algorithm modeling

• Model IP in dll

• EDA vendors and measurement vendors

• Code examples

