
IBIS Interconnect SPICE Subcircuits
Specification

(IBIS-ISS)

Draft .2
August 11, 2009

1

Overview
The IBIS Open Forum, in order to enable easier data exchange between users of
signal/power integrity simulation and physical layout/routing software tools, is issuing a
generic netlist format, to be called “IBIS Interconnect SPICE Subcircuits” (IBIS-ISS).

This format would be similar in structure and major functions to the SPICE (Simulation
Program with Integrated Circuit Emphasis) nodal syntax developed at the University of
California at Berkeley and since implemented in various forms by individual software
tool vendors. If approved, IBIS-ISS would be the first industry-standard version of
SPICE Subcircuitss.

This version of IBIS-ISS is based on a subset of HSPICE ®, used with permission from
Synopsys, Inc. HSPICE is a registered trademark of Synopsys, Inc.

Goals and Scope
The syntax of IBIS-ISS is intended for use to:

• describe interconnect structures (such as PCB traces, connectors, cables, etc.)
electrically, for analysis in a signal integrity and/or power integrity context

• describe the arrangement or topology of interconnect structures, as they relate to
each other and to active devices in a system

To these ends, IBIS-ISS will include support for:
• elementary circuit elements (resistors, capacitors, inductors)
• abstraction through modular, user-defined subcircuit definitions
• transmission line elements (lossless and lossy)
• frequency-domain network parameters (e.g., S-parameters)
• parameter/variable passing to elements and subcircuits
• dependent sources
• string-based node naming
• user-defined comments

IBIS-ISS will NOT include or cover:
• model formats or “process cards” for active devices (e.g., diodes, transistors)
• independent sources
• controls or options for any simulation engine (e.g., precision, algorithm selection)
• simulation or analysis types (e.g., DC, transient)
• sweep or run control (e.g., Monte Carlo)
• geometrical descriptions for field solvers
• support for other kinds of data extraction/export (e.g., S-parameter generation)
• measurement, printing or probing
• encryption support

2

Best Practices

Scaling
Scaling of interconnect subcircuits may give different results between
different simulators and should be avoided.

Global Parameters
Global parameters may give different results between different simulators
and should be avoided.

Exponent Range
Exponent range should be limited to between e-60 and e+60.

Numeric Scale Factors
Berkeley Spice does not support the “X” (Meg) scale factor and
should be avoided.

Name Fields
A name field should begin with [a-z] or [A-Z], the remaining characters

should be limited to [a-z], [A-Z], [0-9], ~!@#%&_<>?[]|:;
Parameter Names

Parameter Names should begin with [a-z] or [A-Z], and the remaining
characters should be limited to [a-z] or [A-Z], [0-9], ! # $ % [] _
A Parameter should be defined in only one .param statement within a subckt.

Node Names
Node names should either be all numeric [0-9], or be a Name Field.

3

Conventions
The following typographical conventions are used in IBIS-ISS documentation.

Convention Description

Courier Indicates command syntax.

Italic Indicates a user-defined value, such as object_name.

Bold Indicates user input—text you type verbatim—in syntax and
examples.

[] Denotes optional parameters, such as:

write_file [-f filename]

... Indicates that parameters can be repeated as many times
as necessary:

pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as

low | medium | high

+ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.

Control-c Indicates a keyboard combination, such as holding down
the Control key and pressing c.

4

4
4 Input Netlist and Data Entry

Describes the input netlist file and methods of entering data.

Input Netlist File Guidelines

An input filecontains the following:

■ Design netlist (subcircuits, and so on).

An input filename can be up to 1024 characters long. The input netlist file
cannot be in a packed or compressed format.

Statements in the input netlist file can be in any order.

N

Netlist input processing is case insensitive, except for file names and their
paths.

Input Line Format
■ The input reader can accept an input token, such as:

• a statement name.

• a node name.

• a parameter name or value.

Any valid string of characters between two token delimiters is a token.

■ An input statement, or equation can be up to 1024 characters long.

■ IBIS-ISS ignores differences between upper and lower case in input
lines, except in quoted filenames.

■ To continue a statement on the next line, enter a plus (+) sign as
the first non-numeric, non-blank character in the next line.

■ To indicate “to the power of” in your netlist, use two asterisks (**).
For example, 2**5 represents two to the fifth power (25)

■ To continue all IBIS-ISS statements, including quoted strings (such
as paths and algebraics), use a single whitespace followed by a backslash
(\) or a double backslash (\\) at the end of the line that you want to
continue.

5

• A single backslash preserves white space.

■ Parameter names must begin with an alphabetic character, but
thereafter can contain numbers and some special characters.

• Curly braces ({ }), are interpreted as square brackets ([]).

• Names are input tokens. Token delimiters must precede and follow
names.

• Names can be up to 1024 characters long and are not case-
sensitive.

• Do not use any of the time keywords as a parameter name or node
name in your netlist.

• The following symbols are reserved operator keywords:

() = " ‘

Do not use these symbols as part of any parameter or node name that
you define.

Special Characters
The following table lists the special characters that can be used as part of
node names, element parameter names, and element instance names. For
detailed discussion, see the appropriate sections in this chapter.

N

To avoid unexpected results or error messages, do not use the following
mathematical characters in a parameter name in IBIS-ISS: * - + ^ and /.

T IBIS-ISS / Netlist Special Characters

Special Character
“Legal anywhere”=first
character or any
position in name
“Included only”=any
position except first
character

Node Name Instance Name
(cannot be the
first character;
element key
letter only)

Parameter Name
(cannot be the first
character, element
key letter only)

Delimiters

 ~ tilde Legal
anywhere

Included only Included only n/a

 ! exclamation
point

Legal
anywhere

Included only Included only n/a

6

 @ at sign Legal
anywhere

included only Included only n/a

 # pound sign Legal
anywhere

Included only Included only n/a

 $ dollar sign Included only
(avoid if after a
number in node
name)

Included only Included only In-line comment
character

 % percent Legal
anywhere

Included only included only, n/a

 ^ caret Legal
anywhere

Included only included only
(avoid usage),

“To the power
of”, i.e., 2^5, two
raised to the fifth
power

 & ampersand Legal
anywhere

Included only Included only n/a

 * asterisk included only
(avoid using *
in node
names),

Included only included only
(avoid using in
parameter
names),

Comment in both
IBIS-ISS
Wildcard
character.
Double asterisk
(**) is “To the
power of”.

 () parentheses Illegal Illegal Illegal Token delimiter

 - minus included only Included only

Illegal

n/a

 _ underscore Legal
anywhere

Included only Included only n/a

7

 + plus sign included only Included only included only
(avoid usage);

Illegal

Continues
previous line,
except for quoted
strings
(expressions,
paths,
algebraics)

 = equals Illegal Illegal optional in

.PARAM
statements

Token delimiter

 < > less/more
than

Legal
anywhere

Included only Included only n/a

 ? question mark Legal
anywhere

Included only Included only Wildcard in
character in both
IBIS-ISS

 / forward slash Legal
anywhere

Included only Illegal n/a

 { } curly braces included only,
converts { } to
[]

Included only Included only Auto-converts to
square brackets
([])

 [] square
brackets

Included only Included only Included only n/a

 \ backslash
(requires a
whitespace
before to use
as a
continuation)

included only Included only

Illegal

Continuation
character for
quoted strings
(preserves
whitespace)

8

 \\ double
backslash
(requires a
whitespace
before to use
as a
continuation)

included only Illegal Illegal Continuation
character for
quoted strings
(preserves
whitespace)

 | pipe Legal
anywhere

Included only Included only n/a

 , comma Illegal Illegal Illegal Token delimiter

 . period Illegal Included only Included only Netlist keyword,
(i.e.,
.PARAMETER,
etc.).

 : colon Included only Included only Included only Delimiter for
element
attributes

 ; semi-colon Included only Included only Included only n/a

 " " double-quotes Illegal Illegal Illegal Expression and
filename
delimiter

 ‘ ’ single quotes Illegal Illegal Illegal Expression and
filename
delimiter

Blank
(whitespace)

Use before \ or
 \\ line
continuations

Token delimiter

First Character
The first character in every line specifies how IBIS-ISS interprets the
remainder of the line.

9

T First Character
DescriptionsIBIS_ISS_DRAFTo2.doc

Line If the First Character is... Indicates

Subsequent lines of
netlist, and all lines of
included files

. (period) Netlist keyword. For
example,

.PARAM

c, C, e, E, f, F, g, G, h, H, ,
k, K, l, L, r, R, s, S, v,
V,w,W

Element instantiation

* (asterisk) Comment line

+ (plus) Continues previous line

Delimiters
■ An input token is any item in the input file that IBIS-ISS recognizes.
Input token delimiters are: tab, blank, comma (,), equal sign (=), and
parentheses ().

■ Single (‘) or double quotes (“) delimit expressions and filenames.

■

■

Instance Names
The names of element instances begin with the element key letter, except for
subcircuit instances, whose instance names begin with X. (Subcircuits are
sometimes called macros or modules.) Instance names can be up to 1024
characters long.

T Element
IdentifiersIBIS_ISS_DRAFTo2.doc

10

Letter
(First
Char)

Element Example Line

C Capacitor Cbypass 1 0 10pf

E Voltage-controlled voltage source Ea 1 2 3 4 K

F Current-controlled current source Fsub n1 n2 vin 2.0

G Voltage-controlled current source G12 4 0 3 0 10

H Current-controlled voltage source H3 4 5 Vout 2.0

K Linear mutual inductor (general
form)

K1 L1 L2 1

L Linear inductor LX a b 1e-9

R Resistor R10 21 10 1000

S S-parameter element S1 nd1 nd2 s_model2

V Voltage source V1 8 0 DC=0

W Transmission Line W1 in1 0 out1 0 N=1 L=1

T Transmission Line

X Subcircuit call X1 2 4 17 31 MULTI WN=100
LN=5

■

Numbers
You can enter numbers as integer, floating point, floating point with an integer
exponent, or integer or floating point with one of the scale factors listed below.

T Scale
FactorsIBIS_ISS_DRAFTo2.doc

11

Scale Factor Prefix Symbol Multiplying Factor

T tera T 1e+12

G giga G 1e+9

MEG or X mega M 1e+6

K kilo k 1e+3

MIL n/a none 25.4e-6

M milli m 1e-3

U micro µ 1e-6

N nano n 1e-9

P pico p 1e-12

F femto f 1e-15

A atto a 1e-18

N

Scale factor A is not a scale factor in a character string that contains
amps. For example, IBIS-ISS interprets the 20amps string as 20e-18mps
(20-18amps), but it correctly interprets 20amps as 20 amperes of current,
not as 20e-18mps (20-18amps).

■ Numbers can use exponential format or engineering key letter
format, but not both (1e-12 or 1p, but not 1e-6u).

■ To designate exponents, use D or E.

■ Trailing alphabetic characters are interpreted as units comments.

■ Units comments are not checked.

12

Parameters and Expressions
■ Parameter names use IBIS-ISS name syntax rules, except that
names must begin with an alphabetic character. The other characters
must be either a number, or one of these characters:

! # $ % [] _

■ If you create multiple definitions for the same parameter, IBIS-ISS
uses the last parameter definition even if that definition occurs later in the
input than a reference to the parameter.

■ You must define a parameter before you use that parameter to
define another parameter.

■ When you select design parameter names, be careful to avoid
conflicts with parameterized libraries.

■ To delimit expressions, use single quotes.

■ Expressions cannot exceed 1024 characters.

■ For improved readability, use a double slash (\\) at end of a line, to
continue the line.

Using Subcircuits

Reusable cells are the key to saving labor in any CAD system. This also
applies to circuit simulation, in IBIS-ISS

■ To create and simulate a reusable circuit, construct it as a
subcircuit.

■ Use parameters to expand the utility of a subcircuit.

13

5
5 Parameters

Describes how to use parameters within IBIS-ISS subckts.

Parameters are similar to the variables used in most programming languages.
Parameters hold a value that you assign when you create your circuit design
or that the simulation calculates based on circuit solution values. Parameters
can store static values for a variety of quantities (resistance, source voltage,
rise time, and so on).

Using Parameters in Simulation (.PARAM)

Defining Parameters
Parameters in IBIS-ISS are names that you associate with numeric values.
You can use any of the methods described below to define parameters.

T .PARAM Statement
SyntaxIBIS_ISS_DRAFTo2.doc

Parameter Description

Simple
assignment

.PARAM <SimpleParam>=1e-12

Algebraic
definition

.PARAM <AlgebraicParam>=‘SimpleParam*8.2’

SimpleParam excludes the output variable.

Subcircuit default .SUBCKT <SubName> <ParamDefName>=<Value>

.

14

A parameter definition in IBIS-ISS always uses the last value found in the input
netlist (subject to local versus global parameter rules). The definitions below
assign a value of 3 to the DupParam parameter.

.PARAM DupParam=1

...

.PARAM DupParam=3

IBIS-ISS assigns 3 as the value for all instances of DupParam, including
instances that are earlier in the input than the .PARAM DupParam=3
statement.

All parameter values in IBIS-ISS are IEEE double floating point numbers. The
parameter resolution order is:

1 Resolve all literal assignments.

2 Resolve all expressions.

3 Resolve all function calls.

Error: Reference source not found shows the parameter passing order.

T Parameter Passing
OrderIBIS_ISS_DRAFTo2.doc

.PARAM statement () .SUBCKT call (instance)

.SUBCKT call (instance) .SUBCKT definition (symbol)

.SUBCKT definition (symbol) .PARAM statement (

Assigning Parameters
You can assign the following types of values to parameters:

■ Constant real number

■ Algebraic expression of real values

■ Predefined function

■ Circuit value

■ Model value

To invoke the algebraic processor, enclose a complex expression in single
quotes. A simple expression consists of one parameter name.

15

The parameter keeps the assigned value, unless a later definition changes its
value.

Inline Parameter Assignments
To define circuit values, using a direct algebraic evaluation:

r1 n1 0 R=’1k/sqrt(HERTZ)’ $ Resistance for frequency

Using Algebraic Expressions

In IBIS-ISS, an algebraic expression, with quoted strings, can replace any
parameter in the netlist.

Some uses of algebraic expressions are:

■ Parameters:

.PARAM x=’y+3’

■ Algebra in elements:

R1 1 0 r=’ABS(v(1)/i(m1))+10’

In addition to using quotations, you must define the expression inside the
PAR() statement for output.The continuation character for quoted parameter
strings, in IBIS-ISS, is a double backslash (\\). (Outside of quoted strings, the
single backslash (\) is the continuation character.)

Built-In Functions and Variables

In addition to simple arithmetic operations (+, -, *, /), you can use the built-in
functions listed below and the variables listed below in IBIS-ISS expressions.

16

T IBIS-ISS Built-in
FunctionsIBIS_ISS_DRAFTo2.doc

17

IBIS-ISS Form Function Class Description

sin(x) sine trig Returns the sine of x (radians)

cos(x) cosine trig Returns the cosine of x (radians)

tan(x) tangent trig Returns the tangent of x (radians)

asin(x) arc sine trig Returns the inverse sine of x (radians)

acos(x) arc cosine trig Returns the inverse cosine of x (radians)

atan(x) arc tangent trig Returns the inverse tangent of x (radians)

sinh(x) hyperbolic
sine

trig Returns the hyperbolic sine of x (radians)

cosh(x) hyperbolic
cosine

trig Returns the hyperbolic cosine of x (radians)

tanh(x) hyperbolic
tangent

trig Returns the hyperbolic tangent of x (radians)

abs(x) absolute
value

math Returns the absolute value of x: |x|

sqrt(x) square root math Returns the square root of the absolute value
of x: sqrt(-x)=-sqrt(|x|)

pow(x,y) absolute
power

math Returns the value of x raised to the integer
part of y: x(integer part of y)

pwr(x,y) signed
power

math Returns the absolute value of x, raised to the
y power, with the sign of x: (sign of x)|x|y

x**y power If x<0, returns the value of x raised to the
integer part of y.

If x=0, returns 0.

If x>0, returns the value of x raised to the y
power.

18

log(x) natural
logarithm

math Returns the natural logarithm of the absolute
value of x, with the sign of x: (sign of x)log(|
x|)

log10(x) base 10
logarithm

math Returns the base 10 logarithm of the
absolute value of x, with the sign of x: (sign
of x)log10(|x|)

exp(x) exponential math Returns e, raised to the power x: ex

db(x) decibels math Returns the base 10 logarithm of the
absolute value of x, multiplied by 20, with the
sign of x: (sign of x)20log10(|x|)

int(x) integer math Returns the integer portion of x. The
fractional portion of the number is lost.

nint(x) integer math Rounds x up or down, to the nearest integer.

sgn(x) return sign math Returns -1 if x is less than 0.

Returns 0 if x is equal to 0.

Returns 1 if x is greater than 0

sign(x,y) transfer
sign

math Returns the absolute value of x, with the sign
of y: (sign of y)|x|

def(x) parameter
defined

control Returns 1 if parameter x is defined.

Returns 0 if parameter x is not defined.

min(x,y) smaller of
two args

control Returns the numeric minimum of x and y

max(x,y) larger of
two args

control Returns the numeric maximum of x and y

[cond] ?x : y ternary
operator

Returns x if cond is not zero. Otherwise,
returns y.

 .param z=’condition ? x:y’

< relational
operator
(less than)

Returns 1 if the left operand is less than the
right operand. Otherwise, returns 0.

.para x=y<z (y less than z)

19

<= relational
operator
(less than
or equal)

Returns 1 if the left operand is less than or
equal to the right operand. Otherwise,
returns 0.

.para x=y<=z (y less than or equal to z)

> relational
operator
(greater
than)

Returns 1 if the left operand is greater than
the right operand. Otherwise, returns 0.

.para x=y>z (y greater than z)

>= relational
operator
(greater
than or
equal)

Returns 1 if the left operand is greater than
or equal to the right operand. Otherwise,
returns 0.

.para x=y>=z (y greater than or equal to z)

== equality Returns 1 if the operands are equal.
Otherwise, returns 0.

.para x=y==z (y equal to z)

!= inequality Returns 1 if the operands are not equal.
Otherwise, returns 0.

.para x=y!=z (y not equal to z)

&& Logical
AND

Returns 1 if neither operand is zero.
Otherwise, returns 0. .para x=y&&z (y AND
z)

|| Logical OR Returns 1 if either or both operands are not
zero. Returns 0 only if both operands are
zero.

 .para x=y||z (y OR z)

T IBIS-ISS Special
VariablesIBIS_ISS_DRAFTo2.doc

IBIS-ISS Form Function Class Description

time current simulation
time

control Uses parameters to define the current
simulation time, during transient analysis.

20

temper current circuit
temperature

control Uses parameters to define the current
simulation temperature, during
transient/temperature analysis.

hertz current simulation
frequency

control Uses parameters to define the frequency,
during AC analysis.

21

Parameter Scoping and Passing

If you use parameters to define values in sub-circuits, you need to create
fewer similar cells, to provide enough functionality in your library. You can
pass circuit parameters into hierarchical designs, and assign different values
to the same parameter within individual cells, when you run simulation.

A parameter is defined either by a .parameter statement (local to that
subcircuit), or can be passed into a subcircuit, or can be defined on a subckt
definition line.

(Some details need to be clarified on this)

.param x=0

.subckt def

.param x=1

x1 1 2 abc x=2

.subckt abc 1 2 x=3

.param x=3

r1 1 2 R=x

.ends abc

.ends def

.end

How you handle hierarchical parameters depends on how you construct and
analyze your cells. You can construct a design in which information flows from
the top of the design, down into the lowest hierarchical levels.

■ To construct a library of small cells that are individually controlled
from within, set local parameters and build up to the block level.

This section describes the scope of parameter names, and how IBIS-ISS
resolves naming conflicts between levels of hierarchy.

22

Library Integrity (Needs careful discussion)
Integrity is a fundamental requirement for any symbol library. Library integrity
can be as simple as a consistent, intuitive name scheme, or as complex as
libraries with built-in range checking.

Library integrity might be poor if you use libraries from different vendors in a
circuit design. Because names of circuit parameters are not standardized
between vendors, two components can include the same parameter name for
different functions. For example, one vendor might build a library that uses the
name Tau as a parameter to control one or more subcircuits in their library.
Another vendor might use Tau to control a different aspect of their library. If
you set a global parameter named Tau to control one library, you also modify
the behavior of the second library, which might not be the intent. This is why
Best Practices recommends that Global Parameters be avoided.

23

Subcircuits

X<subcircuit_name> adds an instance of a subcircuit to your netlist. You must
already have defined that subcircuit in your netlist by using a .SUBCKT
command.

Syntax
X<subcircuit_name> n1 <n2 n3 …> subnam
<parnam = val &> <M = val> <S=val> <DTEMP=val>

Argument Definition

X<subcircuit_name> Subcircuit element name. Must begin with an X,
followed by up to 15 alphanumeric characters.

n1 … Node names for external reference.

subnam Subcircuit model reference name.

parnam A parameter name set to a value (val) for use only in
the subcircuit. It overrides a parameter value in the
subcircuit definition, but is overridden by a value set in
a .PARAM statement.

Subckt scoping rules

A .subckt or .model definition must occur in the subckt in
which the subckt or model is referenced, or in a calling
subckt at any level above.

24

.INCLUDE

Includes another netlist as a subcircuit of the current netlist.

Syntax

.INCLUDE ‘file_path file_name’

Arguments

Argument Description

file_path Path name of a file for computer operating systems that support tree-
structured directories.

An include file can contain nested .INCLUDE calls to itself or to
another include file. If you use a relative path in a nested .INCLUDE
call, the path starts from the directory of the parent .INCLUDE file,
not from the current working directory. If the path starts from the
current working directory, IBIS-ISS can also find the .INCLUDE file,
but prints a warning.

file_name Name of a file to include in the data file. The file path, plus the file
name, can be up to 16 characters long. You can use any valid file
name for the computer’s operating system.

Description

Use this command to include another netlist in the current netlist. You can
include a netlist as a subcircuit in one or more other netlists. You must enclose
the file path and file name in single or double quotation marks. Otherwise, an
error message is generated.

Example

.INCLUDE `/myhome/subcircuits/diode_circuit´

25

Node Name (or Node Identifier) Conventions
Nodes are the points of connection between elements in the input netlist. Either names
or numbers may be used to designate nodes. Node numbers can be from 1 to
999999999999999 (1 to 1e16-1); node number 0 is always ground. Letters that follow
numbers in node names are ignored.

When the node name begins with a letter or a valid special character, the node name
can contain a maximum of 1024 characters.

Subcircuit Node Names
Two subcircuit node names are assigned in this format.

To indicate the ground node, use either the number 0, the name GND, or !GND, or
GROUND, GND!. Every node should have at least two connections, except for
transmission line nodes (unterminated transmission lines are permitted) and MOSFET
substrate nodes (which have two internal connections).

Element, Instance, and Subcircuit Naming Conventions
Instances and subcircuits are elements and as such, follow the naming conventions for
elements.

Element names begin with a letter designating the element type, followed by up to 1023
alphanumeric characters. Element type letters are R for resistor, C for capacitor and so
on.

26

Comments and Line Continuation
Comments require an asterisk (*) as the first character in a line or a dollar sign ($)
directly in front of the comment anywhere on the line. For example:

* <comment_on_a_line_by_itself>

or

< IBIS-ISS statement> $ <comment following input>

Comment statements may appear anywhere in the circuit description. The dollar sign
($) must be used for comments that do not begin in the first character position on a line
(for example, for comments that follow simulator input on the same line). If it is not the
first nonblank character, then the dollar sign must be preceded by either:

• Whitespace
• Comma (,)
• Valid numeric expression

The dollar sign may also be used within node or element names. For example:

* RF=1K GAIN SHOULD BE 100
$ MAY THE FORCE BE WITH MY CIRCUIT
VIN 1 0 PL 0 0 5V 5NS $ 10v 50ns
R12 1 0 1MEG $ FEED BACK
.PARAM a=1w$comment a=1, w treated as a space and ignored
.PARAM a=1k$comment a=1e3, k is a scale factor

A dollar sign is the preferred way to indicate comments, because of the flexibility of its
placement within the code.

Line continuations require a plus sign (+) as the first character in the line that follows.
Here is an example of comments and line continuation in a netlist file:

.ABC Title Line
* on this line, because the first line is always a comment)
* This is a comment line
.MODEL n1 NMOS $ this is an example of an inline comment
* This is a comment line and the following line is a continuation

+ LEVEL=3

27

Elements
Linear Resistors
Rxxx node1 node2 [R =] value

The value of a linear resistor can be a constant, or an
expression of parameters.

Parameter Description

Rxxx Name of a resistor

node1 and node2 Names or numbers of the connecting nodes

value resistance value, in ohms

Linear Capacitors

Cxxx node1 node2 [C=]val

The value of a linear capacitor can be a constant, or an expression of
parameters.

Parameter Description

Cxxx Name of a capacitor. Must begin with C, followed by up to 1023
alphanumeric characters.

node1 and
node2

Names or numbers of connecting nodes.

value capacitance value, in Farads.

Voltage Shunt

Vxxx node1 node2 [DC=]0

This creates a short between nodes node1 and node2

28

Mutual Inductors
General form:

Kxxx Lyyy Lzzz [K=] coupling

Parameter Description

Kxxx Mutual inductor element name. Must begin with K, followed by
up to 1023 alphanumeric characters.

Lyyy Name of the first of two coupled inductors.

Lzzz Name of the second of two coupled inductors.

K=coupling Coefficient of mutual coupling. K is a unitless number, with
magnitude > 0. If K is negative, the direction of coupling
reverses. This is equivalent to reversing the polarity of either of
the coupled inductors. Use the K=coupling syntax when using a
parameter value or an equation, and the keyword “k=” can be
omitted.

Linear Inductors
Lxxx node1 node2 [L =] inductance

Parameter Description

Lxxx Name of an inductor.

node1 and node2 Names or numbers of the connecting nodes.

inductance inductance value, in Henries.

29

T-element (Ideal Transmission Lines)

General form:

Txxx in refin out refout Z0=val TD=val [L=val]

+ [IC=v1,i1,v2,i2]

Parameter Description

Txxx Lossless transmission line element name. Must begin with T,
followed by up to 1023 alphanumeric characters.

in Signal input node.

refin Ground reference for the input signal.

out Signal output node.

refout Ground reference for the output signal.

Z0 Characteristic impedance of the transmission line (Ohms).

TD Propagation time delay of the transmission line (in seconds). If
physical length (L) is specified, then units for TD are considered in
seconds per meter.

L Physical length of the transmission line, in units of meters.
Default=1.

30

3 W-element Modeling of Coupled Transmission
Lines

Describes how to use basic transmission line simulation equations and an
optional method for computing the parameters of transmission line equations.

The W-element is a versatile transmission line model that you can apply to
efficiently and accurately simulate transmission lines, ranging from a simple
lossless line to complex frequency-dependent lossy-coupled lines.

Input Syntax for the W-element
Syntax:
Wxxx i1 i2 ... iN iR o1 o2 ... oN oR N=val L=val
+ [RLGCMODEL=name | TABLEMODEL=name]

Parameter Description

N Number of signal conductors (excluding the reference conductor).

i1...iN Node names for the near-end signal-conductor terminal

iR Node name for the near-end reference-conductor terminal.

o1... oN Node names for the far-end signal-conductor terminal

oR Node name for the far-end reference-conductor terminal.

L Length of the transmission line.

RLGCMODEL Name of the RLGC model.

TABLEMODEL Name of the frequency-dependent tabular model

31

The W-element supports these formats to specify transmission line properties:

■ Model 1: RLGC-Model specification

• Internally specified in a .MODEL statement.

• Externally specified in a different file.

■ Model 4: Frequency-dependent tabular model.

Normally, you can specify parameters in the W-element card in any order.
Specify the number of signal conductors, N, after the list of nodes. You can
intermix the nodes and parameters in the W-element card.

Input Model 1: W-element, RLGC Model
Equations and Parameters on page 96 (NOTE: Do we want to include these
explanations) describes the inputs of the W-element per unit length matrices:
Ro (DC resistance), L, G, C, Rs (skin effect), and Gd (dielectric loss)

The W-element does not limit any of the following parameters:

■ Number of coupled conductors.

■ Shape of the matrices.

■ Line loss.

■ Length or amount of frequency dependence.

The RLGC text file contains frequency-dependent RLGC matrices per unit
length. The W-element also handles frequency-independent RLGC, and
lossless (LC) lines. It does not support RC lines.

Because RLGC matrices are symmetrical, the RLGC model specifies only the
lower triangular parts of the matrices. The syntax of the RLGC model for the
W-element is:

.MODEL name W MODELTYPE=RLGC N=val
+ Lo=matrix_entries
+ Co=matrix_entries [Ro=matrix_entries Go=matrix_entries]
+ Rs=matrix_entries wp=val Gd=matrix_entries Rognd=val
+ Rsgnd=val Lgnd=val

Parameter Description

N Number of conductors (same as in the element card).

L

DC inductance matrix, per unit length

H
m

.

32

C

DC capacitance matrix, per unit length

F
m

.

Ro

DC resistance matrix, per unit length

Ω
m

.

Go

DC shunt conductance matrix, per unit length

S
m

.

Rs

Skin effect resistance matrix, per unit length

Ω
m H z

.

Gd

Dielectric loss conductance matrix, per unit length

S
m H z⋅

.

wp Angular frequency of the polarization constant [radian/sec] (see
Introduction to the Complex Dielectric Loss Model on page 99)). When
the wp value is specified, the unit of Gd becomes [S/m].

Lgnd

DC inductance value, per unit length for grounds

H
m

 (reference line).

Rognd

DC resistance value, per unit length for ground

Ω
m

.

Rsgnd

Skin effect resistance value, per unit length for ground

Ω
m H z

.

The following input netlist file shows RLGC input for the W-element:

* W-Element example, four-conductor line
W1 N=3 1 3 5 0 2 4 6 0 RLGCMODEL=example_rlc l=0.97

* RLGC matrices for a four-conductor lossy
.MODEL example_rlc W MODELTYPE=RLGC N=3
+ Lo=
+ 2.311e-6
+ 4.14e-7 2.988e-6
+ 8.42e-8 5.27e-7 2.813e-6

33

+ Co=
+ 2.392e-11
+ -5.41e-12 2.123e-11
+ -1.08e-12 -5.72e-12 2.447e-11
+ Ro=
+ 42.5
+ 0 41.0 + 0 0 33.5
+ Go= + 0.000609
+ -0.0001419 0.000599
+ -0.00002323 -0.00009 0.000502
+ Rs=
+ 0.00135
+ 0 0.001303
+ 0 0 0.001064
+ Gd=
+ 5.242e-13
+ -1.221e-13 5.164e-13
+ -1.999e-14 -7.747e-14 4.321e-13

Using RLGC Matrices
RLGC matrices in the RLGC model of the W-element are in the Maxwellian
format

Input Model 4: Frequency-Dependent Tabular Model
You can use the tabular RLGC model as an extension of the analytical RLGC
model to model any arbitrary frequency-dependent behavior of transmission
lines (this model does not support RC lines).

You can use this extension of the W-element syntax to specify a table model
(use a .MODEL statement of type w). To accomplish this, the .MODEL
statement refers to .MODEL statements where the “type” is SP (described in
Small-Signal Parameter Data Frequency Table Model (SP Model) on
page 77), which contain the actual table data for the RLGC matrices.

N

To ensure accuracy, the W-element tabular model requires the following:

■ R and G tables require zero frequency points.

■ L and C tables require infinity frequency points as well as zero
frequency points.

To specify a zero frequency point, you may use DC keyword or f=0 data entry
in the DATA field of the SP model. To specify an infinity frequency point, use
the INFINITY keyword of the SP model.

34

See also, Small-Signal Parameter Data Frequency Table Model (SP Model)
on page 77.

Notation Used
■ Lower-case variable: Scalar quantity

■ Upper-case variable: Matrix quantity

■ All upper-case words: Keyword

■ Parentheses and commas: Optional

Table Model Card Syntax
.MODEL name W MODELTYPE=TABLE [FITGC=0|1] N=val
+ LMODEL=l_freq_model CMODEL=c_freq_model
+ [RMODEL=r_freq_model GMODEL=g_freq_model]

Parameter Description

FITCG Keyword for W Model (w/ MODELTYPE=TABLE) 1=causality check
on, 0= causality check off (default)

N Number of signal conductors (excluding the reference conductor).

LMODEL SP model name for the inductance matrix array.

CMODEL SP model name for the capacitance matrix array.

RLMODEL SP model name for the resistance matrix array. By default, it is zero.

GMODEL SP model name for the conductance matrix array. By default, it is
zero.

35

S-element Syntax

Use the following S-element syntax to show the connections within a circuit:

Sxxx nd1 nd2 ... ndN [ndRef]

+ [MNAME=Smodel_name]

+ [FBASE = base_frequency] [FMAX=maximum_frequency]

Parameter Description

nd1 nd2...ndN Nodes of an S-element Three kinds of definitions are present:

■With no reference node ndRef, the default reference node is
GND. Each node ndi (i=1~N) and GND construct one of the N
ports of the S-element.
■With one reference node, ndRef is defined. Each node ndi
(i=1~N) and the ndRef construct one of the N ports of the
S-element.
■With an N reference node, each port has its own reference
node. You can write the node definition in a clearer way as:
nd1+ nd1- nd2+ nd2- ... ndN+ ndN-
Each pair of the nodes (ndi+ and ndi-, i=1~N) constructs one
of the N ports of the S-element.

ndRef Reference node

MNAME Name of the S model; Note that string parameters are supported
in calling an MNAME.

FBASE Base frequency to use for transient analysis. This value becomes
the base frequency point for Inverse Fast Fourier Transformation
(IFFT).

■If you do not set this value, the base frequency is a reciprocal
value of the transient period.
■If you set a frequency that is smaller than the reciprocal value
of the transient, then transient analysis performs circular
convolution, and uses the reciprocal value of FBASE as its
base period.

36

FMAX Maximum frequency use in transient analysis. Used as the
maximum frequency point for Inverse Fast Fourier
Transformation (IFFT).

The nodes of the S-element must come first. You can specify all the optional
parameters in both the
S-element and S model statements, except for MNAME argument.

You can enter the optional arguments in any order, and the parameters
specified in the element statement have a higher priority.

N + 1 t e r m i n a l s y s t e m

n d 1

[i] 1
[v i n c] 1

[v r e f] 1

(+) [v] 1

.

.

.

n d N

[i] N
[v i n c] N

[v r e f] N

(+) [v] N

(-) n d R

(r e f e r e n c e n o d e)

.

.

.

...

F Terminal Node Notation

Node Example
The following example illustrates the nd1 nd2...ndN—no reference, single
reference, and multi-reference parameters.

**S-parameter example

* no reference
S_no_ref n1 n2 mname=s_model

* single reference
S_one_ref n1 n3 gnd mname=s_model

*multi-reference
S_multi_ref n1 gnd n4 gnd mname=s_model

37

The S-element must have a call to one of the supported S-parameter file
formats (IBIS-ISS gets the number of ports from the S-parameter file You can
also explicitly specify N=n where ‘n’ is the number of ports.

■ For n terminals, the S-element assumes no reference node.

■ For n+1 terminals, the S-element assumes one reference node.

■ For 2n terminals, the S-element assumes signal nodes and n
reference nodes. Each pair of nodes is a signal and a reference node.

S Model Syntax

Use the following syntax to describe specific S models:

.MODEL Smodel_name S [N=dimension]
+ [TSTONEFILE=filename

+ [FBASE=base_frequency] [FMAX=maximum_frequency]

Parameter Description

Smodel_name Name of the S model.

S Specifies that the model type is an S model.

N S model dimension, which is equal to the terminal number of an
S-element and excludes the reference node.

38

TSTONEFILE Specifies the name of a Touchstone file. Data contains frequency-
dependent array of matrixes. Touchstone files must follow the .s#p file
extension rule, where # represents the dimension of the network.
Note that string parameters are supported for TSTONEFILE
Example:

.subckt sparam n1 n2 tsfile=str('ss_ts.s2p')
S1 n1 n2 0 mname=s_model
.model s_model S TSTONEFILE=str(tsfile)
.ends
x1 A B sparam tsfile=str('ss_ts.s2p')
…

For details, see Touchstone® File Format Specification by the EIA/IBIS
Open Forum (http://www.eda.org).

FBASE Base frequency used for transient analysis. IBIS-ISS uses this value as
the base frequency point for Fast Inverse Fourier Transformation
(IFFT).

■If FBASE is not set, IBIS-ISS uses a reciprocal of the transient
period as the base frequency.
■If FBASE is set smaller than the reciprocal value of transient
period, transient analysis performs circular convolution by using the
reciprocal value of FBASE as a base period.

FMAX Maximum frequency for transient analysis. Used as the maximum
frequency point for Inverse Fast Fourier Transform (IFFT).

The, TSTONEFILE parameters describe the frequency-varying behavior of a
network.

39

Voltage-Controlled Voltage Source (VCVS)

Linear
Exxx n+ n- [VCVS] in+ in- gain

For a description of these parameters, see table VCVS Parameters.

Laplace Transform
Voltage Gain H(s):

Exxx n+ n- LAPLACE in+ in- k0, k1, ..., kn / d0,
d1, ..., dm

For a description of these parameters, see table VCVS Parameters.

H(s) is a rational function, in the following form:You can use parameters to
define the values of all coefficients (k0, k1, ..., d0, d1, ...).

Pole-Zero Function
Voltage Gain H(s):

Exxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm

For a description of these parameters, see table VCVS Parameters.

The following equation defines H(s) in terms of poles and zeros:

H s()
a s α z 1 j 2 π f z 1–+() … s α z n j 2 π f z n–+() s α z n j 2 π f z n+ +()⋅

b s α p 1 j 2 π f p 1–+() … s α p m j 2 π f p m–+() s α p m j 2 π f p m+ +()⋅
---=

The complex poles or zeros are in conjugate pairs. The element description
specifies only one of them, and the program includes the conjugate. You can
use parameters to specify the a, b, α, and f values.

Example

Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

40

The Elow_pass statement describes a low-pass filter, with the transfer
function:

H s() 1 . 0
1 . 0 s 1+() s 0 . 5 j 2 π 0 . 1 3 7 9⋅+ +() s 0 . 5 j 2 π 0 . 1 3 7 9⋅()–+()⋅
--=

■

A

Foster Pole-Residue Form
Gain E(s) form

Exxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

For a description of these parameters, see table VCVS Parameters.

In the above syntax, parenthesis , commas, and slashes are separators—they
have the same meaning as a space. A pole-residue pair is represented by four
numbers (real and imaginary part of the residue, then real and imaginary part
of the pole).

You must make sure that Re[pi]<0; otherwise, the simulations will certainly
diverge. Also, it is a good idea to assure passivity of the model (for an N-port
admittance matrix Y, Re{Y} should be positive-definite), or the simulation is
likely to diverge).

N

For real poles, half the residue value is entered because it is applied twice. In
the above example, the first pole-residue pair is real, but is written as “A1/(s-
p1)+A1/(s-p1)”; therefore, 0.0004 is entered rather than 0.0008.

41

Table VCVS Parameters.

E-element Parameters
The E-element parameters are described in the following list.

Parameter Description

Exxx Voltage-controlled element name. Must begin with E, followed
by up to 1023 alphanumeric characters.

gain Voltage gain.

in +/- Positive or negative controlling nodes. Specify one pair for each
dimension.

k Ideal transformer turn ratio: V (i n + , i n -) k V (n + , n -)⋅= or,
number of gates input.

n+/- Positive or negative node of a controlled element.

VCVS Keyword for a voltage-controlled voltage source. VCVS is a
reserved word; do not use it as a node name.

42

Current-Dependent Current Sources — F-elements

This section explains the F-element syntax and parameters.

N

G-elements with algebraics make F-elements obsolete. You can still use
F-elements for backward-compatibility with existing designs.

Current-Controlled Current Source (CCCS) Syntax

Linear
Fxxx n+ n- <CCCS> vn1 gain

F-element Parameters
The F-element parameters are described in the following list.

Parameter Description

CCCS Keyword for current-controlled current source. CCCS is a IBIS-ISS
reserved keyword; do not use it as a node name.

Fxxx Element name of the current-controlled current source. Must begin
with F, followed by up to 1023 alphanumeric characters.

gain Current gain.

n+/- Connecting nodes for a positive or negative controlled source.

vn1 … Names of voltage sources, through which the controlling current
flows. Specify one name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in
increasing order.

43

y1,... Corresponding output current values of x.

44

Voltage-Dependent Current Sources — G-elements

This section explains G-element syntax statements, and their parameters.

 Gxxx n+ n- <VCCS| > in+ in- ...

Voltage-Controlled Current Source (VCCS)

Linear
Gxxx n+ n- <VCCS> in+ in- transconductance

For a description of the G-element parameters, see Table VCCS Parameters.

Laplace Transform

Transconductance H(s):

Gxxx n+ n- LAPLACE in+ in- k0, k1, ..., kn / d0,
d1, ..., dm

H(s) is a rational function, in the following form:

H s()
k 0 k 1 s … k n s n+ + +

d 0 d 1 s … d m s m+ + +
---=

You can use parameters to define the values of all coefficients (k0, k1, ..., d0,
d1, ...).

Pole-Zero Function
Transconductance H(s):

Gxxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm

The following equation defines H(s) in terms of poles and zeros:

45

H s()
a s α z 1 j 2 π f z 1–+() … s α z n j 2 π f z n–+() s α z n j 2 π f z n+ +()⋅

b s α p 1 j 2 π f p 1–+() … s α p m j 2 π f p m–+() s α p m j 2 π f p m+ +()⋅
---=

The complex poles or zeros are in conjugate pairs. The element description
specifies only one of them, and the program includes the conjugate. You can
use parameters to specify the a, b, α, and f values.

For a description of the G-element parameters, see table VCVS Parameters.

Example
Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0 / 1.0 0.001,0.0

The Ghigh_pass statement describes a high-pass filter, with the transfer
function:

H s() 1 . 0 s 0 . 0 j 0 . 0⋅+ +()⋅
1 . 0 s 0 . 0 0 1 j 0 . 0⋅+ +()⋅
---=

Foster Pole-Residue Form

Transconductance G(s) form

Gxxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

In the above syntax, parenthesis , commas, and slashes are separators—they
have the same meaning as a space. A pole-residue pair is represented by four
numbers (real and imaginary part of the residue, then real and imaginary part
of the pole).

You must make sure that Re[pi]<0; otherwise, the simulations will certainly
diverge. Also, it is a good idea to assure passivity of the model (for an N-port
admittance matrix Y, Re{Y} should be positive-definite), or the simulation is
likely to diverge).

For a description of the G-element parameters, see table VCVS Parameters.

Example
To represent a G(s) in the form,

G s() 0 . 0 0 1 1 1 0
1 2–

s 0 . 0 0 0 8

s 1 1 0
1 0×+

---------------------------- 0 . 0 0 1 j 0 . 0 0 6–()
s 1 1 0

8
j 1 . 8 1 0

1 0×+×–()–

0 . 0 0 1 j 0 . 0 0 6+()
s 1 1 0

8
j 1 . 8 1 0

1 0×–×–()–
--

+ + +×+=

46

You would input:

G1 1 0 FOSTER 2 0 0.001 1e-12
+(0.0004, 0)/(-1e10, 0) (0.001, -0.006)/(-1e8, 1.8e10)

N

For real poles, half the residue value is entered because it is applied
twice. In the above example, the first pole-residue pair is real, but is
written as “A1/(s-p1)+A1/(s-p1)”; therefore, 0.0004 is entered rather than
0.0008.

47

Table VCCS Parameters.

G-element Parameters
The G-element parameters described in the following list.

Parameter Description

Gxxx Name of the voltage-controlled element. Must begin with G,
followed by up to 1023 alphanumeric characters.

in +/- Positive or negative controlling nodes. Specify one pair for each
dimension.

n+/- Positive or negative node of the controlled element.

transconductance Voltage-to-current conversion factor.

VCCS Keyword for the voltage-controlled current source. VCCS is a
reserved IBIS-ISS keyword; do not use it as a node name.

x1,... Controlling voltage, across the in+ and in- nodes. Specify the
x values in increasing order.

y1,... Corresponding element values of x.

Current-Dependent Voltage Sources — H-elements

This section explains H-element syntax statements, and defines their
parameters.

48

N

E-elements with algebraics make H-elements obsolete. You can still use
H-elements for backward-compatibility with existing designs.

Current-Controlled Voltage Source (CCVS)

Linear
Hxxx n+ n- <CCVS> vn1 transresistance

Parameter Description

CCVS Keyword for the current-controlled voltage source. CCVS is a
IBIS-ISS reserved keyword; do not use it as a node name.

Hxxx Element name of current-controlled voltage source. Must start
with H, followed by up to 1023 alphanumeric characters.

n+/- Connecting nodes for positive or negative controlled source.

transresistance Current-to-voltage conversion factor.

vn1 … Names of voltage sources, through which controlling current
flows. You must specify one name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values
in increasing order.

y1,... Corresponding output voltage values of x.

49

	Best Practices
	Scaling
	Scaling of interconnect subcircuits may give different results between different simulators and should be avoided.
	Global Parameters
	Global parameters may give different results between different simulators and should be avoided.
	Exponent range should be limited to between e-60 and e+60.
	Numeric Scale Factors
	Berkeley Spice does not support the “X” (Meg) scale factor and should be avoided.
	Name Fields
	A name field should begin with [a-z] or [A-Z], the remaining characters should be limited to [a-z], [A-Z], [0-9], ~!@#%&_<>?[]|:;
	Node names should either be all numeric [0-9], or be a Name Field.
	Conventions
	.INCLUDE

