	BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD ID#: 	155.21
ISSUE TITLE: New AMI API to Resolve Dependent Model Parameter
REQUESTER: Fangyi Rao and Radek Biernacki, Agilent Technologies, Inc.
 Adge Hawes, IBM
DATE SUBMITTED: December 13, 2012
DATE REVISED:	September 10August26, 2013, September 17, 20133
[bookmark: _GoBack]DATE ACCEPTED BY IBIS OPEN FORUM: Oct. 11, 2013

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:

AMI model parameters that are used by EDA tools can depend on other model parameters and simulation parameters including data rate, IBIS corner and IBIS model name. The form of such dependency relation varies from IC vendor to IC vendor and from device to device. The number of possible variations among vendors and devices is infinite. Model vendors need a flexible mechanism to implement parameter dependency according to their proprietary formula and pass the dependent parameter values to EDA tools. It’s foreseeable that certain vendors need to conceal the dependency formula.

The proposed approach does not require any ad hoc syntax or rule to be added for new dependency forms. The same DLLexecutable model can resolve dependent parameters for different IBIS models according to the new reserved parameter Model_Name. The API is a sensible partition between EDA tool and model, allowing model vendors to have full control on dependency definition as well as implementation.

Two new functions are added to the AMI API, and two new reserved parameters are introduced.

In Section 10.2.1, replace

“The executable model file of a Serializer-Deserializer (SERDES) transmitter or receiver contains up to three functions: “AMI_Init”, “AMI_GetWave” and “AMI_Close”.”

with

“The executable model file of a Serializer-Deserializer (SERDES) transmitter or receiver contains up to five functions: “AMI_Resolve”, “AMI_Resolve_Close”, “AMI_Init”, “AMI_GetWave” and “AMI_Close”.”

Replace

“These functions (AMI_Init, AMI_GetWave and AMI_Close)”

with

“These functions (AMI_Resolve, AMI_Resolve_Close, AMI_Init, AMI_GetWave and AMI_Close)”

Replace

“The three functions can be included in the executable model file in one of the following two combinations:
Case 1: Executable model file has AMI_Init, AMI_GetWave and AMI_Close.
Case 2: Executable model file has AMI_Init and AMI_Close.”

with

“The five functions can be included in the executable model file in one of the following four combinations:
Case 1: Executable model file has AMI_Init, AMI_GetWave and AMI_Close.
Case 2: Executable model file has AMI_Init and AMI_Close.
Case 3: Executable model file has AMI_Resolve, AMI_Resolve_Close, AMI_Init, AMI_GetWave and AMI_Close.
Case 4: Executable model file has AMI_Resolve, AMI_Resolve_Close, AMI_Init and AMI_Close.”

In Section 10.2.3 add:

[bookmark: AMI_GetWave]Function:	AMI_Resolve
Required:	No
Declaration:	AMI_Resolve (double bit_time,
 char * AMI_parameters_in,
 char ** AMI_parameters_out);

Arguments:

bit_time

Input argument, in second, equals 1/data rate.

AMI_parameters_in

Input argument. The format and content of this string are the same as that of the AMI_parameters_in argument in AMI_Init.

AMI_parameters_out

Output argument, pointer to a string that contains name-value pairs of dependent parameters of Usage Dep. The format of this string is the same as that of the AMI_parameters_out argument in AMI_Init.

Function:	AMI_Resolve_Close
Required:	Yes if AMI_Resolve exists
Declaration:	AMI_Resolve_Close (char * AMI_paramters_out);

Arguments:

AMI_parameters_out

The AMI_parameters_out pointer returned by AMI_Resolve.

In Section 10.3, add:

Add under “Usage”

“Dep
Parameter value is to be assigned by the AMI_Resolve function”

Also in Section 10.3, replace

“Out
Parameter value is coming from the AMI model

InOut
Parameter value is a required input to the AMI model. The AMI model may return a different value.”

with

“Out
Parameter value is coming from the AMI_Init and/or AMI_GetWave functions

InOut
Parameter value is a required input to the AMI model. The AMI_Init and/or AMI_GetWave functions may return a different value.”

Add to “RESERVED PARAMETERS REFERENCE”

Parameter: Resolve_Exists
Required: No
Descriptors:
Usage: Info
Type: Boolean
Format: Value
Default: <Boolean_literal>
Description: <string>
Definition: Tells EDA tool whether the model implements the AMI_Resolve/AMI_Resolve_Close function pair
Usage Rules: If omitted, the default is False.
Other Notes: Independent parameters must be of Usage In or InOut. Dependent parameters must be of Usage Type Dep. Reserved parameters with allowed usage of Out can have Uusage Dep.
 The actual implementation in the tables is left to the editorial committee. For example, the current column Out can be renamed to Out/Dep.

Usage Dep is allowed in .ami files in which the parameter “Resolve_Exists” is True.

Usage Dep distinguishes parameters returned by AMI_Resolve, which are of Usage Dep, from those by AMI_Init and/or AMI_GetWave, which are of Usage Out or Usage InOut, preventing a parameter from being returned by both AMI_Resolve and AMI_Init/AMI_GetWave.
Example:
(Resolve_Exists (Usage Info) (Type Boolean) (Value True)
 (Description "Tells EDA tool to use AMI_Resolve function")
)

[The actual implementation in the tables is left to the editorial committee. For example, the current column Out can be renamed to Out/Dep.]
[Tables 17-19 will be modified to add Resolve_Exists and to include Dep in allowed usage types of jitter parameters.]

Parameter: Model_Name
Required: No
Descriptors:
Usage: In
Type: String
Format: Value
Default: <sString_literal>
Description: <string>
Definition: Name of the IBIS [Model] keyword that is being used.
Usage Rules: Value specified in the .ami file is ignored. The EDA tool must pass the name of the IBIS [Model] keyword that is being instantiated by the EDA tool through the input parameter strings to AMI_Resolve and AMI_Init functions as the value of this parameter.
Example:
(Model_Name (Usage In) (Type String) (Value "placeholder")
 (Description "The name of the instantiated IBIS model

")
)

The usage of the new API is described below.
1. User selects ibis model and specifies corner and data rate.
1. EDA tool initializes AMI_parameters_out to NULL.
1. If Resolve_Exists is False, go to step 9.
1. If Resolve_Exists is True, EDA tool allocates memory for the AMI_parameters_in string and writes to it name-value pairs of all parameters of Usage type In.
1. EDA tool calls AMI_Resolve before analog channel impulse characterization.
1. DLLThe executable model computes dependent parameter values according to independent parameter values in AMI_parameters_in, bit_time, corner and model_name.
1. DLLThe executable model allocates memory for the AMI_parameters_out string and writes to it name-value pairs of dependent parameters.
1. EDA tool sets/adjusts analog model parameters if their values are returned by AMI_Resolve in AMI_parameters_out. EDA tool calls AMI_Resolve_Close to release the memory allocated by the DLLexecutable model in AMI_Resolve.
1. EDA tool characterizes analog channel impulse responses and finishes the rest of the simulation.

Note that dependent parameters are of Usage Dep, and their values used in the simulation are set by the call to AMI_Resolve before the call to AMI_Init. Values of parameters of Usage InOut returned by the AMI_Init and AMI_GetWave functions shall not affect the dependent parameter values used in the simulation.

Two occurrences, one iIn page 979 under “Parameters:” and the other one in page 100 under “Converter_Parameters:” (IBIS Version 6.0 Draft – ver6.0-wip4.pdf of Sep 8, 2013): - replace

Replace:

When the extension of the external parameter‘s file name ends with “.ami.ami”:

a) only Usage In or Usage Info are allowed for parameters which are to be passed into models instantiated by the [External Model] or the [External Circuit] keywords

the [External Circuit] keywords
When the extension of the external parameter’s file name does not end with “.ami”:
a) the parameter tree must not contain the Reserved_Parameters branch but must contain the Model_Specific branch
b) only Usage Info is allowed

with

When the extension of the external parameter‘s file name ends with .ami:

a) in general, only Usage In or Usage Info are allowed for parameters which are to be passed into models instantiated by the [External Model] or the [External Circuit] keywords,
b) for [External Model] models instantiated from within a [Model] that contains the [Algorithmic Model] keyword pointing to the same .ami file, parameters of Usage Dep are also allowed to be passed to such models.The following rules apply to parameter trees located in parameter files whose file name extension is not “.ami”.
a) The parameter tree must not contain the Reserved_Parameters branch.
b) The parameter tree must contain the Model_Specific branch.
c) The parameter tree may only contain Usage Info parameters.

The following rules must be observed when [External Model] parameters or converter parameters reference parameters located in external parameter files.
a) Usage Info parameters may be referenced in any external parameter file with or without the “.ami” extension.
b) Usage In parameters may be referenced in any parameter file whose file name extension is “.ami”.
c) Usage Dep parameters may also be referenced in an “.ami” parameter file under the following conditions:
· the [External Model] keyword is located under a [Model] keyword which also contains an [Algorithmic Model] keyword,
· the [External Model]'s parameter and the [Algorithmic Model] keyword point to the same “.ami” file,
· the “.ami” parameter file contains the parameter AMI_Resolve_Exists with a value of True.
If all of these conditions are satisfied, the EDA tool must execute the AMI_Resolve function in the executable model defined by the [Algorithmic Model] keyword to resolve the value of any Usage Dep parameter before passing its value to the [External Model] (see Section 10.2.3).

Two occurrences, one in page 119 under “Parameters:” and the other one in page 120 under “Converter_Parameters:” (IBIS Version 6.0 Draft – ver6.0-wip4.pdf of Sep 8, 2013) - replace
When the extension of the external parameter‘s file name ends with “.ami”:
a) only Usage In or Usage Info are allowed for parameters which are to be passed into models instantiated by the [External Model] or the [External Circuit] keywords
When the extension of the external parameter’s file name does not end with “.ami”:
a) the parameter tree must not contain the Reserved_Parameters branch but must contain the Model_Specific branch
b) only Usage Info is allowed
with
The following rules apply to parameter trees located in parameter files whose file name extension is not “.ami”.
a) The parameter tree must not contain the Reserved_Parameters branch.
b) The parameter tree must contain the Model_Specific branch.
c) The parameter tree may only contain Usage Info parameters.

The following rules must be observed when [External Circuit] parameters or converter parameters reference parameters located in external parameter files.
a) Usage Info parameters may be referenced in any external parameter file with or without the “.ami” extension.
b) Usage In parameters may be referenced in any parameter file whose file name extension is “.ami”.

The new API provides model vendors infinite scalability, extensibility and flexibility to implement dependency relations. It also conceals the dependency formula. It allows any complex dependency relation. A few examples are listed below.

Examples:

Example 1: multi-dimensional functions such as y = f(x1, x2, x3)
Example 2: various interpolation methods
Example 3: various extrapolation methods
Example 4: expression in condition statement such as

Example 5: advanced functions such as

 y(tap1, tap2, tap3) = FIR(tap1, tap2, tap3) spectrum at data rate

Example 6:

(Rx_model
 (Reserved_Parameters
 (Resolve_Exists (Usage Info) (Type Boolean) (Value True)
 (Description “Indicates whether DLLthe executable model implements AMI_Resolve.”))
 (Model_Name (Usage In) (Type String) (Value “ignore_me”)
 (Description “IBIS model name”))
 (Rx_Receiver_Sensitivity (Usage Out) (Type Float) (Range 0.0 0.0 0.01)
 (Description “Value depends on OP_mode and data rate”)) …
)
 (Model_Specific
 (Tstonefile (Usage Dep) (Type String) (Value “ignore_me.s4p”)
 (Description “Rx analog model. Value depends on OP_mode”))
 (my_corner (Usage In) (Type String) (Corner “Typ” “Min” “Max”)
 (Description “Informs DLLthe executable model what corner is selected by user”)) (OP_mode (Usage In) (Type Integer) (List 0 1 2 3)
 (Description “Operation mode”))
 …
)
)
In this example, the Rx analog model is represented with a 4-port touchstone file specified by parameter Tstonefile, Both Rx_Receiver_Sensitivity and Tstonefile depend on the legacy IBIS model name, parameter my_corner, and parameter OP_mode, which specifies the device operation mode. Rx_Receiver_Sensitivity also depends on bit_time. Parameters Model_Name, my_corner and OP_mode, having usage type In, are included in both input parameter strings to AMI_Resolve and AMI_Init. Tstonefile is of usage type Dep, and its dependency on Model_Name, my_corner and OP_mode is resolved in AMI_Resolve, which returns the value of Tstonefile. Rx_Receiver_Sensitivity is of usage type Out, and its dependency on Model_Name, my_corner, OP_mode and bit_time is resolved in AMI_Init, which returns the value of Rx_Receiver_Sensitivity.

This BIRD was accepted on Oct. 11, 2013.
image1.wmf
î

í

ì

³

+

<

+

=

0

)

(

0

)

(

)

,

,

(

2

1

3

2

1

3

3

2

1

x

x

if

x

g

x

x

if

x

f

x

x

x

y

oleObject1.bin

