DGG, DGV, OR DL PACKAGE (TOP VIEW)

- Member of Texas Instruments' Widebus™ Family
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors

description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH16245A is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.

48 1 1 OE 1DIR 47 1 1A1 1B1 **∐**2 1B2 | 3 46 II 1A2 GND 4 45 GND 44 🛮 1A3 1B3 | 5 43 1A4 1B4 **∐** 6 42 V_{CC} V_{CC} 47 41 [] 1A5 1B5 **∐**8 1B6 **∐** 9 40 1 1A6 39 GND GND | 10 11 38 🛮 1A7 1B7 L 1B8 🛮 12 37 L 1A8 2B1 113 36 2A1 35 2A2 2B2 14 GND 15 34 GND 2B3 ∏16 33 II 2A3 2B4 🛚 17 32 2A4 31 V_{CC} V_{CC} 4 18 2B5 19 30 2A5 2B6 | 20 29**∏** 2A6 GND 21 28 GND 2B7 1 22 27 2A7 26 2A8 2B8 🛮 23 2DIR 🛮 24 25 20E

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

GQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
Α		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Е		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
ĸ		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
,	\							4

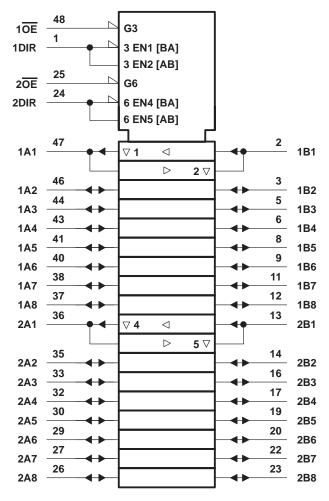
terminal assignments

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	Vcc	VCC	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
Е	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	Vcc	Vcc	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2OE

NC - No internal connection

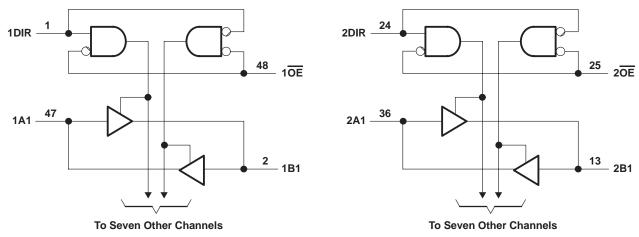
ORDERING INFORMATION

TA	PACKA	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DL Tube		SN74LVCH16245ADL	LVCH16245A
	330F - DL	Tape and reel	SN74LVCH16245ADLR	LVCH16245A
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74LVCH16245ADGGR	LVCH16245A
	TVSOP – DGV	Tape and reel	SN74LVCH16245ADGVR	LDH245A
	VFBGA – GQL	Tape and reel	SN74LVCH16245AGQLR	LDH245A


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DGG, DGV, and DL packages.

logic diagram (positive logic)

Pin numbers shown are for the DGG, DGV, and DL packages.

SCES063H - DECEMBER 1995 - REVISED OCTOBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	$\dots \dots -0.5 \ V$ to 6.5 V
(see Note 1)	,
Voltage range applied to any output in the high or low state,	
(see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	
Continuous current through each V _{CC} or GND	
Package thermal impedance, θ _{JA} (see Note 3): DGG package	
	e 58°C/W
DL package	63°C/W
	e 28°C/W
Storage temperature range, T _{sta}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V/00	Supply voltage	Operating	1.65	3.6	V
vCC.	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
V_{IL} Low-level input voltage V_{I} Input voltage V_{O} Output voltage I_{OH} High-level output current I_{OL} Low-level output current $\Delta t/\Delta v$ Input transition rise or fall rate		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
٧ _I	Input voltage	-	0	5.5	V
	Output valtage	High or low state	0	V _{CC}	V
۷O	Output voltage	3-state	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.5	V
		V _{CC} = 1.65 V		-4	
1	High lavel autout avenue	V _{CC} = 2.3 V		-8	A
ЮН	High-level output current	V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
la.	Low lovel output ourrent	V _{CC} = 2.3 V		8	A
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate	•		5	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAF	RAMETER	TEST COND	DITIONS	Vcc	MIN	TYP† M	λX	UNIT	
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2		\Box		
		I _{OH} = -4 mA		1.65 V	1.2				
VOL II Control inputs II(hold) A or B ports	I _{OH} = -8 mA		2.3 V	1.7			V		
	I _{OH} = -12 mA		2.7 V	2.2			V		
		10H = -12 IIIA		3 V	2.4				
VOL		I _{OH} = -24 mA		3 V	2.2				
		I _{OL} = 100 μA		1.65 V to 3.6 V		().2		
		$I_{OL} = 4 \text{ mA}$		1.65 V		0.	45		
		$I_{OL} = 8 \text{ mA}$		2.3 V		().7	V	
		I _{OL} = 12 mA	2.7 V		().4			
		I _{OL} = 24 mA		3 V		0.	55		
lį	Control inputs	V _I = 0 to 5.5 V		3.6 V			±5	μΑ	
		V _I = 0.58 V	1.65 V	‡			μΑ		
		V _I = 1.07 V		‡					
		V _I = 0.7 V	2.3 V	45					
I _I (hold)	A or B ports	V _I = 1.7 V	2.5 V	-45					
		V _I = 0.8 V	3 V	75					
		V _I = 2 V	V _I = 2 V						
		$V_{I} = 0 \text{ to } 3.6 \text{ V}$	36 V		±5	00			
l _{off}		V_I or $V_O = 5.5 V$		0		±	10	μΑ	
IOZ¶		V _O = 0 to 5.5 V		3.6 V		±	10	μΑ	
1		$V_I = V_{CC}$ or GND	la = 0	3.6 V			20	_	
Icc		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\text{\#}}$	IO = 0	3.6 V			20	μΑ	
ΔlCC		One input at V _{CC} – 0.6 V, Oth	2.7 V to 3.6 V		5	00	μΑ		
Ci	Control inputs	V _I = V _{CC} or GND		3.3 V		5		pF	
Cio	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		7.5		pF	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

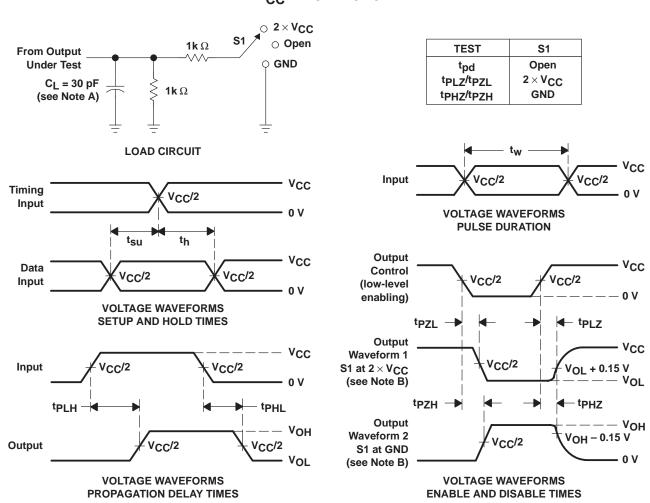
PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V	
	(1141 01)	(0011 01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A or B	B or A	‡	‡	‡	‡		4.7	1	4	ns
t _{en}	ŌE	A or B	‡	‡	‡	‡		6.7	1.5	5.5	ns
^t dis	ŌE	A or B	‡	‡	‡	‡		7.1	1.5	6.6	ns
tsk(o)								·		1	ns

[‡] This information was not available at the time of publication.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This information was not available at the time of publication.

[§] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

[¶] For I/O ports, the parameter IOZ includes the input leakage current, but not I_{I(hold)}.

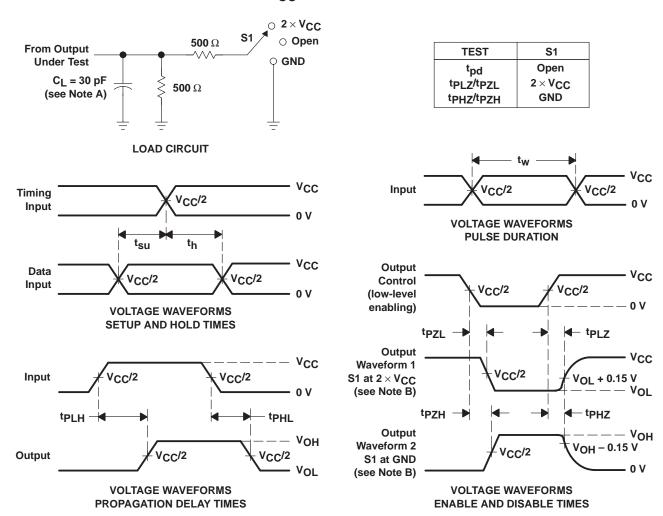

[#] This applies in the disabled state only.

operating characteristics, T_A = 25°C

PARAMETER			TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	PARAWETER			TYP	TYP	TYP	ONIT	
Cont	Power dissipation capacitance	Outputs enabled	f = 10 MHz	†	†	40	pF	
C _{pd}	per transceiver	Outputs disabled	T = TO MINZ	†	†	4	þг	

[†]This information was not available at the time of publication.

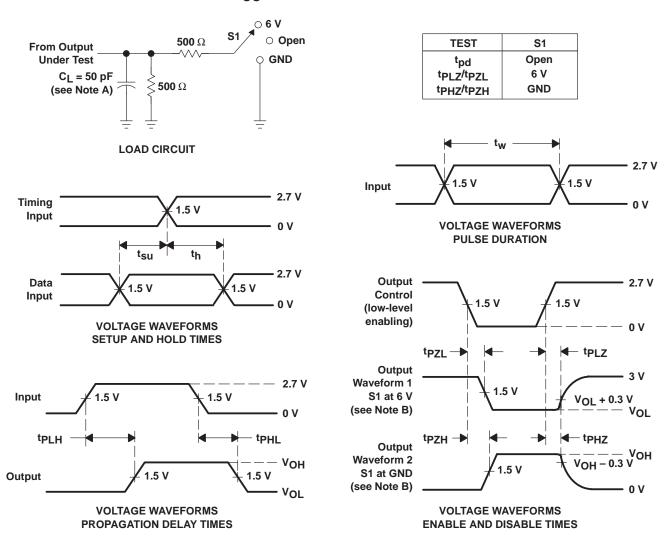
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V \pm 0.15 V$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{\Omega} = 50 \Omega$, $t_{\Gamma} \leq$ 2.5 ns, $t_{\Gamma} \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpH7 are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated