Style Definition: Heading 1: Page break before

Formatted: Centered

IBIS Interconnect SPICE Subcircuits Specification (IBIS-ISS)

Draft 0.2-3
August 11, 2009June 14, 2010

Formatted: Centered
Contents

1. Overview 5
2. Goals and Scope 6
3. Best Practices 7
4. Conventions 9
5. Input Structure and Data Entry 12
6. Input File Guidelines 12
7. Statements and Tokens 12
8. Special Characters 14
9. First Character 18
10. Delimiters 19
11. Instance Names 19
12. Numbers 20
13. Parameters and Expressions 21
14. Node Name (or Node Identifier) Conventions 23
15. Line Continuations 24
16. Parameters 26
17. File Includes 35
18. Comments 51
19. Subcircuit Definitions 53
20. Subckt Scoping Rules 53
21. Subcircuit Definition Ending Statements. 54
22. Elements 56
23. Subcircuits 56
24. Linear Resistor 57
25. Linear Capacitor 57
26. Voltage Shunt. 57
27. Mutual Inductor 58
28. Linear Inductor 59
29. T-element (Ideal Transmission Line) 59
30. W-element (Coupled Transmission Line) 61
Format 1: RLGC Model 62
Format 2: Frequency-Dependent Tabular Specification. 64
31. S-element 67
32. E-element (Voltage-Controlled Voltage Source) 71
Linear 71
Laplace Transform 71
Pole-Zero Function 71
Foster Pole-Residue Form 72
33. F-element (Current-Controlled Current Source) 74
34. G-element (Voltage-Controlled Current Source) 76
Linear 76
Laplace Transform 76
Pole-Zero Function 76
Foster Pole-Residue Form. 77
35. H-element (Current-Controlled Voltage Source) 80
36. Overview 3
Z. Goals and Scope 3
37. Best Practices. 4
38. Gonventions 5
39. Input Structure and Data Entry6
40. Parameters. 17
41. File Includes 26
42. Comments and Line Continuation 28
43. Elements 29
44. Voltage-Controlled Voltage Source (VCVS) 44

1.Overview

The IBIS Open Forum, in order to enable easier data exchange between users of signal/power integrity simulation and physical layout/routing software tools, is issuing a generic netlist format, to be called "IBIS Interconnect SPICE Subcircuits" (IBIS-ISS).

This format would be-is similar in structure and major functions to the SPICE (Simulation Program with Integrated Circuit Emphasis) nodal syntax developed at the University of California at Berkeley and since implemented in various forms by individual software tool vendors. If approved,IBIS-ISS would beis the first industry-wide standard versionattempt to standardize-of SPICE-Subcircuitss subcircuit representation.

This version of IBIS-ISS is based on a subset of HSPICE ${ }^{\circledR}$, used with permission from Synopsys, Inc. HSPICE is a registered trademark of Synopsys, Inc.

2. Goals and Scope

The syntax of IBIS-ISS is intended for use-to:

- describe interconnect structures (such as PCB traces, connectors, cables, etc.) • electrically, for analysis in a signal integrity and/or power integrity context
- describe the arrangement or topology of interconnect structures, as they relate to each other and to active devices in a system

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at: 0.25 " + Indent at: $0.5^{\prime \prime}$

Formatted: Space Before: Auto, After: Auto

To these ends, IBIS-ISS-will include-includes support for:
\qquad elementary circuit elements (resistors, capacitors, inductors)

- abstraction through modular, user-defined subcircuit definitions transmission line elements (lossless and lossy)
 frequency-domain network parameters (e.g., S-parameters)
- parameter/variable passing to elements and subcircuits
- - dependent sources
- - string-based node naming
- _user-defined comments
- - abstraction through modular, user-defined subcircuit definitions,
\bullet
IBIS-ISS will-does NOT include or cover:
- descriptions of complete netlists intended for input "as-is" to simulation tools
- _ model formats or "process cards" for active devices (e.g., diodes, transistors)
- independent sources
- controls or options for any simulation engine (e.g., precision, algorithm selection)
- _simulation or analysis types (e.g., DC, transient)
- _sweep or run control (e.g., Monte Carlo)
- geometrical descriptions for field solvers
- _ support for other kinds of data extraction/export (e.g., S-parameter generation)
- _measurement, printing or probing
- _encryption support

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at: $0.25^{\prime \prime}+$ Indent at: $0.5^{\prime \prime}$
Formatted: Normal, No bullets or numbering
Formatted: List Paragraph, Bulleted + Level: 1

+ Aligned at: $0.25^{\prime \prime}+$ Indent at: $0.5^{\prime \prime}$

Formatted: Font color: Black

Formatted: Space Before: Auto, After: Auto

Formatted: Space Before: Auto, After: Auto, Bulleted + Level: $1+$ Aligned at: $0.25{ }^{\prime \prime}+$ Indent at: 0.5"

Formatted: Indent: First line: 0"

1.3. Best Practices

2
3. Scaling
4. Scaling of interconnect subcircuits may give different results between different simulators and should be avoided.
5. Global Parameters
6. Global parameters may give different results between different simulators and should be avoided.

Exponent Range

7. Exponent range should shall be limited to between e-60 and e+60.
8. Numeric Scale Factors
9. Berkeley SpiceFor maximum compatibility, IBIS-ISS does not support the " X "
(Meg) scale factor_and should be avoided.
10. Name Fields

A name field should shall begin with $[a-z]$ or $[A-Z]$,$] , the The remaining$ characters should of a name field shall be limited to

- [a-z], [A-Z], [0-9], ~!@\#\%\&_<>? ||:

Formatted: Font: 20 pt , Bold
Formatted: Normal
Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt
Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at: 0.25 " + Indent at: $0.5^{\prime \prime}$
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt
Formatted: Normal
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt
Formatted: Font: 12 pt , Not Bold
Formatted: Indent: Left: 0 "
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt, Not Bold
Formatted ... [1]
Formatted: Font: 12 pt
Formatted: List Paragraph, Indent: Left: 0"
Formatted: Font: 12 pt, Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt
Formatted: Font: 12 pt , Not Bold
Formatted: Font: 12 pt
Formatted: Normal, Indent: Left: 0"
Formatted: Font: 12 pt
Formatted: Font: 12 pt

13.4. Conventions

The following typographical conventions are used in IBIS-ISS-documentation. Note that these may be combined (e.g., Courier font in bold type).

Convention	Description	
Courier	Indicates command statement syntax.	
Italic	Indicates a user-defined value, such as object_namewhere a specific text string will replace the italics shown in an actual IBIS-ISS file (e.g., Rxxxx is a generic representation of a resistor element name, such as Rname).	
Bold	Indicates user inputverbatim text-text youtype verbatimin syntax and examples.	
[]	Denotes optional parameters, such as: write_file [- -f filename]tokens	
\ldots	Indicates that parameters-tokens can of the same type may be repeated-added as many times as necessary as appropriate to the element structure: pin1 pin2 ... pinNpin	
1	Indicates a choice among defined alternatives, such as low \| medium	high
+	Indicates a continuation of a command linestatement across input lines. Note that continuation may only be used between tokens and shall not split any single token across lines.	
t	Indicates levels of directory structure.	
Edit $>$ Copy	Indicates a path to a menu command, such as opening the Edit menu and choosing Copy.	
Control-c	Indicates a keyboard combination, such as holding down the Control key and pressing c .	

Formatted: Font: (Default) Courier New, 11 pt, Not Bold, Font color: Black

Formatted: Font: (Default) Courier New
Formatted: Font: Helvetica, 11 pt, Not Bold, Italic, Font color: Black

Formatted: Font: Italic
Formatted: Font: (Default) Courier New, 11 pt, Not Bold, Font color: Black

Formatted: Font: (Default) Courier New, 11 pt, Not Bold, Font color: Black

Formatted: Font: Helvetica, 11 pt, Font color: Black
Formatted: Font: Bold

Formatted: Left, Right: 1.88", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

1.5. Input StructureNetlist and Data Entry

This section dDescribes the input netlist-file and methods of enteringstructures for representing input data.

1. Input Netlist File Guidelines

An input file_contains the following:nsists of a collection of statements describing a portion of a complete circuit. This input file is intended for inclusion in a larger netlist or description of a complete circuit, to be used by a simulation tool.

1. Design netlist (subcircuits, and so-on).

An input filename canmay be up to 1024 characters long. The input netlist file shall be in ASCII format (insert IEEE or ANSI definition here). The input file eannot-shall not be in a binary, packed or compressed format.
Statements in the input netlist file can be in any order.
Fable 10

- Netlist input processing is-case insensitive, except for file names and their paths.

2. InputStatements and Tokens Line Format

A statement in IBIS-ISS is a text string consisting of tokens and delimiters. * An IBIS-ISS file may contain multiple statements (the number of statements is not limited by the IBIS-ISS definition, but may be limited by the computer architecture and/ or operating system used to process the file).

Any individual input statement may be up to 1024 characters long.
Statements in an input file may appear in any order.

Formatted: Heading 1, No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Font: 14 pt, Bold
Formatted: Heading 2
Formatted: Font: (Default) Arial, 12 pt

Formatted: Font: (Default) Arial
Formatted: Indent: Left: 0.69", Hanging 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: $0.69 "$, Tab stops: Not at $0.5^{\prime \prime}$
Formatted: Font: (Default) Arial
Formatted: Font: (Default) Arial
Formatted: Heading 2
Formatted: Heading 2, No bullets or numbering
Formatted: Heading 2

Formatted: Indent: Left: 0.69", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Bullet, Indent: Left: 0.69", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Body, No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$
Formatted: Font: (Default) Arial

Any valid string of characters between two token delimiters is a token.

 For the purpose of this specification, statements are grouped into the following types:- Element instances
- Parameter definitions
- File includes
- Subcircuit definitions
- Model definitions
- Comments
- Subcircuit ending statements

Subcircuit ending statements, subcircuit definitions, model definitions, parameter definitions and file includes all begin with the dot (.) character.

The specific syntax of the above statement types are described in the sections below.

1. The input reader can accept an input token, such as:
2. a statement name.
z. a node name.
3. a parameter name or value.

Any valid string of characters between two token delimiters is a token.
4. An input statement, or equation can be up to 1024 characters long.

5-! IBIS-ISS ignores differences between upper and lower case in input statementslines, except in quoted filenames.
6-. To continue a statement on the nextacross multiple lines, enter athe plus (+) sign shall be used as the first non-numeric, non-blank character in the nex \ddagger of each continued line. The + sign shall be used only between tokens and token delimiters and never to split tokens.
7. To indicate "to the power of" in your netlist, use two asterisks ($* *$). For example, $2 * * 5$ represents two to the fifth power $\left(2^{5}\right)$
8.- To continue all IBIS-ISS statements, including quoted stringsTokens with extended length -(such as paths and algebraicsexpressions) may span multiple lines; using use-a single whitespace character followed by a backslash ($-\backslash$) or a double backslash ($\backslash \backslash$) at the end of the line containing the token to be continued on the following line. that you want to continue.
9. A single backslash preserves white space.

- Parameters are used in two contexts.
- Parameters in parameter definition statements are strings, defining names to be used as variables which are assigned specific values by the statement. These values may be numeric, strings defining an expression or equation, or strings matching parameters defined elsewhere.
- Parameters may also appear in element instances, model definitions and subcircuit definitions. These parameters may be user-defined or may use names pre-defined by the syntax of the element.
10._Parameter names must begin with an alphabetic character, but thereafter canmay contain numbers and/or some special characters:11. cCurly braces (\{ \}), , , and/or are interpreted as-square brackets ([]).
12:_Names-Parameter names are input tokens. Token delimiters must precede and follow names.
1-_-_Names-Parameter names canmay be up to 1024 characters long and are not case-sensitive.

2. Do not use any of the time keywords as a parameter name or node name in your netlist.
3.-_The following symbols are reserved operatorkeywords:
() = " '
Do not use tThese symbols shall not be used as part of any parameter or node name that you define.

3. Special Characters

The following table lists the special characters that canmay be used as part of node names, element parameter names, and element instance names. For detailed discussion, see the appropriate sections in this chapter.
Fable 10-Note:
To avoid unexpected results or error messages, do not use the following mathematical characters in a parameter name in IBIS-ISS: * $+{ }^{\wedge}$ and $/$.
1.Table 4 IBIS-ISS / Netlist Special Characters

Formatted: No bullets or numbering, Tab stops: Not at 0.5

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: $0.69 "$, Tab stops: Not at $0.5^{\prime \prime}$
Formatted: Indent: Left: 1.29", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Indent: Left: 1 ", Hanging: 0.29", Bulleted + Level: $1+$ Aligned at: $1^{\prime \prime}+$ Indent at: 1", Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Heading 2

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: 1 + Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: 0.69"

Special Character "Legal anywhere"=first character or any position in name "Included only"=any position except first character		Node Name	Instance Name (cannot be the first character; element key letter only)	Parameter Name (cannot be the first character, element key letter only)	Delimiters
\sim	tilde	Legal anywhere	Included only	Included only	n / a
!	exclamation point	Legal anywhere	Included only	Included only	n / a
@	at sign	Legal anywhere	included only	Included only	n / a
\#	pound sign	Legal anywhere	Included only	Included only	n / a
\$	dollar sign	Included only (avoid if after a number in node name)	Included only	Included only	In-line comment character
\%	percent	Legal anywhere	Included only	included only,	n / a
\wedge	caret	Legal anywhere	Included only	included only (avoid usage),	"To the power of", i.e., $2^{\wedge} 5$, two raised to the fifth power
\&	ampersand	Legal anywhere	Included only	Included only	n/a

*	asterisk	included only (avoid using * in node names),	Included only	included only (avoid using in parameter names),	Comment in both IBIS-ISS Wildcard character. Double asterisk (**) is "To the power of".
()	parentheses	Illegal	Illegal	Illegal	Token delimiter
-	minus	included only	Included only	Illegal	n/a
-	underscore	Legal anywhere	Included only	Included only	n/a
+	plus sign	included only	Included only	included only (avoid usage); Illegal	Continues previous line, except for quoted strings (expressions, paths, algebraics)
$=$	equals	Illegal	Illegal	optional in .PARAM statements	Token delimiter
$<>$	less/more than	Legal anywhere	Included only	Included only	n/a
?	question mark	Legal anywhere	Included only	Included only	Wildcard in character in both IBIS-ISS
I	forward slash	Legal anywhere	Included only	Illegal	n / a

\{ \}	curly braces	included only, converts \{ \} to []	Included only	Included only	Auto-converts to square brackets ([])
[]	square brackets	Included only	Included only	Included only	n / a
1	backslash (requires a whitespace before to use as a continuation)	included only	Included only	Illegal	Continuation character for quoted strings (preserves whitespace)
11	double backslash (requires a whitespace before to use as a continuation)	included only	Illegal	Illegal	Continuation character for quoted strings (preserves whitespace)
1	pipe	Legal anywhere	Included only	Included only	n / a
,	comma	Illegal	Illegal	Illegal	Token delimiter
-	period	Illegal	Included only	Included only	Netlist Statement keywordidentifier , (i.e., .PARAMETER, etc.).
:	colon	Included only	Included only	Included only	Delimiter for element attributes

| ; semi-colon | Included only | Included only | Included only | n/a |
| :---: | :--- | :--- | :--- | :--- | :--- |
| " " | double-quotes Illegal | Illegal | Illegal | Expression and
 filename
 delimiter |
| ،, | single quotes Illegal | Illegal | Illegal | Expression and
 filename
 delimiter |
| Blank
 (whitespace) Use before \or
 II line
 continuations Token delimiter | | | | |

4. First Character

Formatted: Heading 2
The first character in every line specifies how IBIS-ISS interprets the remainder of the line.

	1.Table 5	First Character Descriptions
Line	If the First Character is...	Indicates

Subsequent lines of netlist, and all lines of included files	. (period)	Netlist keywordStatement identifier. For example,
		.PARAM

+ (plus) Continues previous line

5. Delimiters

1. An input tTokens is anyare item-strings in the input file that IBIS-ISS recognizesseparated by delimiters. Input token delimiters are: tab, blank, comma (,), equal sign (=), and parentheses ().
2. In addition, single-single (') or double quotes (") delimit tokens used as expressions_-and filenames.
3.
4.

6. Instance Names

The names of element instances begin with the element key letter, except for subcircuit instances, whose instance names begin with X. (Subcircuits are sometimes called macros or modules.) Instance names eanmay be up to 1024 characters long.
1.Table 6 Element Identifiers

Key Letter (First Char)	Element	Example Line
C	Capacitor	Cbypass 10 10pf
E	Voltage-controlled voltage source	Ea 1234 K
F	Current-controlled current source	Fsub n1 n2 vin 2.0
G	Voltage-controlled current source	G12 4003010
H	Current-controlled voltage source	H3 45 Vout 2.0
K	Linear mutual inductor (general form)	K1 L1 L2 1
L	Linear inductor	LX a b le-9

Formatted: Heading 2
Formatted: Indent: Left: 0.69", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Indent: Left: 0.69", First line: 0.01 ", No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}+1^{\prime \prime}$

Formatted: Bullet, No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Heading 2

Formatted: Indent: Left: 0.69", Hanging: 0.81 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

R	Resistor	R10 21101000
S	S-parameter element	S1 nd1 nd2 s_model2
V	Voltage source	V1 80 DC=0
W	Transmission Line	W1 in1 0 out1 $0 \mathrm{~N}=1 \quad \mathrm{~L}=1$
T	Transmission Line	$\frac{\text { Txxx in 0, out 0. } Z 0=50}{T D=30 n}$
X	Subcircuit instancecall	$\begin{aligned} & \text { X1 } 24 \\ & \mathrm{LN}=5 \end{aligned}$

1.

7. Numbers

You can enter nNumbers may be entered as integer, floating point, floating point with an integer exponent, or integer or floating point with one of the scale factors listed below.
1.Table 7 Scale Factors

Scale Factor	Prefix	Symbol	Multiplying Factor
T	tera	T	$1 \mathrm{e}+12$
G	giga	G	$1 \mathrm{e}+9$
MEG or X	mega	M	$1 \mathrm{e}+6$
K	kilo	k	$1 \mathrm{e}+3$
MIL	n/a	none	$25.4 \mathrm{e}-6$

Formatted: Font: (Default) Courier New, 11 pt Formatted: Body
Formatted: Font: (Default) Courier New, 11 pt
Formatted: Font: (Default) Courier New, 11 pt
Formatted: Font: (Default) Courier New, 11 pt
Formatted: Font: (Default) Courier New, 11 pt, Character scale: 100%

Formatted: Indent: Left: ${ }^{1 "}$, No bullets or numbering, Tab stops: Not at $0.5^{\prime \prime}$
Formatted: Heading 2

Formatted: Indent: Left: 0.69", Hanging: 0.81 ", Bulleted + Level: $1+$ Aligned at: $0.69^{\prime \prime}$ + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

M	milli	m	$1 e-3$
U	micro	μ	$1 e-6$
N	nano	n	$1 e-9$
P	pico	p	$1 e-12$
F	femto	f	$1 e-15$
A	atto	a	$1 e-18$

Table 10-Note:
Scale factor A is not a scale factor in a character string that contains amps. For example, IBIS-ISS interprets the 20amps string as 20e-18mps $\left(20^{-18} \mathrm{amps}\right)$, but it correctly interprets 20amps as 20 amperes of current, not as $20 \mathrm{e}-18 \mathrm{mps}\left(20^{-18} \mathrm{amps}\right)$.
1.! Numbers eanmay use exponential format or engineering key letter format, * but not both (1e-12 or 1 p , but not $1 \mathrm{e}-6 \mathrm{u}$).
Z.- To designate exponents, use D or E.
3._Trailing alphabetic characters are interpreted as units comments.
4.■ Units comments are not checked.

8. Parameters and Expressions

5.- Parameter names use IBIS-ISS name syntax rules, except that names must begin with an alphabetic character. The other characters must be either a number, or one of these characters:

```
! # $ % [ ] _
```

6.-If you create-multiple definitions are given for the same parameter, IBIS- * ISS uses the last parameter definition even if that definition occurs later in the input than a reference to the parameter.
7. You must define aA parameter must be defined before you use-that parameter is used to-in a define-definition for another parameter.
8. When you select design parameter names, be careful to avoid conflicts with parameterized libraries.
9.■To delimit expressions, use single quotes.

Formatted: Indent: Left: 0.69", Hanging:
0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: $0.69{ }^{\prime \prime}$

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: 1 + Aligned at: 0.69" + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Heading 2
Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

10.Expressions cannot exceed 1024 characters.

1-EFor improved readability, use a double slash ($\backslash \backslash$) at end of a line, to continue the line.

Using Subcircuits

Reusable colls are the key to saving labor in any CAD-system. This alse applies to ir simulion, in IBISISS
Z.e= To create and simulate a reusable-circuit, construct it as a subcuit

3-m Use parameters to expand the uility of a subcircuit

9. Node Name (or Node Identifier) Conventions

Nodes are the points of connection between elements in the input netlist. Either names or numbers may be used to designate nodes. Node numbers may be from 1 to 999999999999999 (1 to 1e16-1); node number 0 is always ground. Letters that follow numbers in node names are ignored.

When the node name begins with a letter or a valid special character, the node name may contain a maximum of 1024 characters.

Subcircuit Node Names
Two subcircuit node names are assigned in this format.

To indicate the ground node, use either the number 0, the name GND, or ! GND, or GROUND, GND!. Every node shall have at least two connections, except for transmission line nodes (unterminated transmission lines are permitted) and MOSFET substrate nodes (which have two internal connections).

Element, Instance, and Subcircuit Naming Conventions Instances and subcircuits are elements and as such, follow the naming conventions for elements.

Element names begin with a letter designating the element type, followed by up to 1023 alphanumeric characters. Element type letters are R for resistor, C for capacitor and so on.
10. Line Continuations

Line continuations require a plus sign (+) as the first character in the line that follows. Here is an example of comments and line continuation in a netlist file:
.ABC Title Line

* on this line, because the first line is always a comment)
* This is a comment line
.subckt example n1 n2 \$ this is an example of an inline comment
* This is a comment line and the following line is a
continuation
$+\mathrm{n} 3 \mathrm{n} 4$

Formatted: Left, Right: 0.83 ", No bullets or
numbering, Tab stops: Not at $0.5^{\prime \prime}$

1.6. Parameters

Describes how to use parameters within IBIS-ISS subckts.
Parameters are similar to the variables used in most programming languages. Parameters hold a-values that you-assigned when youcreate yourthe circuit design is created or that are calculated the simulation calculates-based on circuit solution values. Parameters can store static values for a variety of quantities (resistance, source voltage, rise time, and so on).

Using Parameters in Simulation (.PARAM)

Defining Parameters

Parameters in IBIS-ISS are names-strings that you-are associated with numeric values. Youcan use any of the methods described below to define pParameters may be defined using the methods shown below.
1.Table 9 .PARAM Statement Syntax

ParameterToken Description

Simple
assignment

assignment

Algebraic	.PARAM <AlgebraicParam>=‘SimpleParam*8.2'
definition	SimpleParam excludes the output variable.

Subcircuit default .SUBCKT <SubName> <ParamDefName>=<Value>

A parameter definition in IBIS-ISS always uses the last value found in the input netlist (subject to local versus global parameter rules). The definitions below assign a value of 3 to the DupParam parameter.

```
.PARAM DupParam=1
```

Formatted: Heading 1, No bullets or
numbering, Tab stops: Not at 0.5"
Formatted: Norma|

```
.PARAM DupParam=3
```

IBIS-ISS assigns 3 as the value for all instances of DupParam, including instances that are earlier in the input than the . PARAM DupParam=3 statement.

All parameter values in IBIS-ISS are IEEE double floating point numbers. The parameter resolution order is:
1.1. Resolve all literal assignments.
1.2. Resolve all expressions.

1-3. Resolve all function calls.
Error! Reference source not found. shows the parameter passing order.
1.Table 10 Parameter Passing Order
.PARAM statement () .SUBCKT call (instance)
.SUBCKT call (instance) .SUBCKT definition (symbol)
.SUBCKT definition (symbol) .PARAM statement ()

Assigning Parameters

You can assign tThe following types of values may be assigned to parameters:

1. Constant real number
2.-Algebraic expression of real values

3-■ Predefined function
4._Circuit value

5-_Model value
To invoke the algebraic processor, enclose a complex expression in single quotes. A simple expression consists of one parameter name.
The parameter keeps the assigned value, unless a later definition changes its value.

Inline Parameter Assignments

To define circuit values, using a direct algebraic evaluation:

```
r1 n1 0 R='1k/sqrt(HERTZ)' $ Resistance for frequency
```


Using Algebraic Expressions

In IBIS-ISS, an algebraic expression, with quoted strings, can replace any parameter in the netlist.

Some uses of algebraic expressions are:

```
6-1 Parameters:
```

. PARAM $\mathrm{x}={ }^{\prime} \mathrm{y}+3^{\prime}$
7. Algebra in elements:

R1 $10 \quad r={ }^{\prime} \operatorname{ABS}(v(1) / i(m 1))+10^{\prime}$

In addition to using quotations, you must define the expression inside the PAR () statement must be defined for to enable output._The continuation character for quoted parameter strings, in IBIS-ISS, is a double backslash $(\backslash \backslash$). (Outside of quoted strings, the single backslash (\backslash) is the continuation character.)

Built-In Functions and Variables

In addition to simple arithmetic operations (+, $-, *, /$), you can use the built-in functions listed below- and the-variables listed below may be used in IBIS-ISS expressions.
1.Table 11 IBIS-ISS Built-in Functions

IBIS-ISS Form	Function	Class	Description
$\sin (x)$	sine	trig	Returns the sine of x (radians)

$\cos (x)$	cosine	trig	Returns the cosine of x (radians)
$\tan (\mathrm{x})$	tangent	trig	Returns the tangent of x (radians)
$\operatorname{asin}(\mathrm{x})$	arc sine	trig	Returns the inverse sine of x (radians)
$\operatorname{acos}(\mathrm{x})$	arc cosine	trig	Returns the inverse cosine of x (radians)
$\operatorname{atan}(\mathrm{x})$	arc tangent	trig	Returns the inverse tangent of x (radians)
$\sinh (\mathrm{x})$	hyperbolic sine	trig	Returns the hyperbolic sine of x (radians)
$\cosh (x)$	hyperbolic cosine	trig	Returns the hyperbolic cosine of x (radians)
$\tanh (\mathrm{x})$	hyperbolic tangent	trig	Returns the hyperbolic tangent of x (radians)
abs(x)	absolute value	math	Returns the absolute value of $\mathrm{x}:\|\mathrm{x}\|$
sqrt(x)	square root	math	Returns the square root of the absolute value of x : $\operatorname{sqrt}(-x)=-\operatorname{sqrt}(\|x\|)$
$\operatorname{pow}(\mathrm{x}, \mathrm{y})$	absolute power	math	Returns the value of x raised to the integer part of y : $x^{\text {(integer part of } y \text {) }}$
$\operatorname{pwr}(\mathrm{x}, \mathrm{y})$	signed power	math	Returns the absolute value of x, raised to the y power, with the sign of x : $(\operatorname{sign}$ of $x)\|x\|^{y}$

$\mathrm{x}^{\star *} \mathrm{y}$	power		If $x<0$, returns the value of x raised to the integer part of y. If $x=0$, returns 0 . If $x>0$, returns the value of x raised to the y power.
$\log (\mathrm{x})$	natural logarithm	math	Returns the natural logarithm of the absolute value of x, with the sign of x : (sign of x) $\log (\|x\|)$
$\log 10(\mathrm{x})$	base 10 logarithm	math	Returns the base 10 logarithm of the absolute value of x, with the sign of x : (sign of x$) \log _{10}(\|x\|)$
$\exp (\mathrm{x})$	exponential	math	Returns e, raised to the power x : e^{x}
$\mathrm{db}(\mathrm{x})$	decibels	math	Returns the base 10 logarithm of the absolute value of x, multiplied by 20, with the sign of x : (sign of $x) 20 \log _{10}(\|x\|)$
$\operatorname{int}(\mathrm{x})$	integer	math	Returns the integer portion of x. The fractional portion of the number is lost.
$\operatorname{nint}(\mathrm{x})$	integer	math	Rounds x up or down, to the nearest integer.
$\operatorname{sgn}(x)$	return sign	math	Returns -1 if x is less than 0 . Returns 0 if x is equal to 0 . Returns 1 if x is greater than 0
$\operatorname{sign}(\mathrm{x}, \mathrm{y})$	transfer sign	math	Returns the absolute value of x, with the sign of y : (sign of $y)\|x\|$
$\operatorname{def}(\mathrm{x})$	parameter defined	control	Returns 1 if parameter x is defined. Returns 0 if parameter x is not defined.
$\min (\mathrm{x}, \mathrm{y})$	smaller of two args	control	Returns the numeric minimum of x and y

$\max (\mathrm{x}, \mathrm{y})$	larger of two args	control	Returns the numeric maximum of x and y
[cond] ? x : y	ternary operator		Returns x if cond is not zero. Otherwise, returns y. .param $z=$ 'condition? $x: y^{\prime}$
<	relational operator (less than)		Returns 1 if the left operand is less than the right operand. Otherwise, returns 0 . .para $x=y<z$ (y less than z)
<=	relational operator (less than or equal)		Returns 1 if the left operand is less than or equal to the right operand. Otherwise, returns 0 . .para $x=y<=z$ (y less than or equal to z)
>	relational operator (greater than)		Returns 1 if the left operand is greater than the right operand. Otherwise, returns 0 . .para $x=y>z$ (y greater than z)
>=	relational operator (greater than or equal)		Returns 1 if the left operand is greater than or equal to the right operand. Otherwise, returns 0 . .para $x=y>=z$ (y greater than or equal to z)
$=$	equality		Returns 1 if the operands are equal. Otherwise, returns 0. .para $x=y==z$ (y equal to z)
!=	inequality		Returns 1 if the operands are not equal. Otherwise, returns 0. .para $x=y!=z$ (y not equal to z)
\&\&	Logical AND		Returns 1 if neither operand is zero. Otherwise, returns 0. .para $x=y \& \& z$ (y AND z)

	Logical OR	Returns 1 if either or both operands are not zero. Returns 0 only if both operands are zero. .para x=yllz (y OR z)
	1-Table 12 IBIS-ISS Special Variables	

Parameter Scoping and Passing

If you use-parameters are used to define values in sub-circuits, you need to create-fewer similar cells should be used, to provide enough functionality in the resulting your library. You can pass cCircuit parameters may be passed into hierarchical designs, and assign different values may be assigned to the same parameter within individual cells, when you run simulations are run.

A parameter is defined either by a .parameter statement (local to that subcircuit), or canmay be passed into a subcircuit, or canmay be defined on a _subckt definition line.
(Some details need to be clarified on this)

```
.param x=0
.subckt def
.param x=1
x1 1 2 abc x=2
.subckt abc 1 2 x=3
.param x=3
r1 1 2 R=x
.ends abc
.ends def
.end
```

How you handle hierarchical parameters depends on how you construct and analyze your cells. You can construct a design in which information flows from the top of the design, down into the lowest hierarchical levels. The specific details of any particular hierarchy are left to the choice of the user.
2. To construct a library of small cells that are individually controlled from within, set local parameters and build up to the block level.
This section describes the scope of parameter names, and how IBIS-ISS resolves naming conflicts between levels of hierarchy.

Library Integrity (Needs careful discussion)

Integrity is a fundamental requirement for any symbol library. Library integrity can be as simple as a consistent, intuitive name scheme, or as complex as libraries with built-in range checking.

Library integrity might be poor if you use-libraries from different vendors are used in a single circuit design. Because names of circuit parameters are not standardized between vendors, two components can include the same parameter name for different functions. For example, one vendor might build a
library that uses the name Tau as a parameter to control one or more subcircuits in their library. Another vendor might use Tau to control a different aspect of their library. If you set a global parameter named Tau is used to control one library, you also modify-the behavior of the second library may be unintentionally affected., which might not be the intent. This is why Best Practices recommends that Global Parameters be avoided.

7.File Includes

Formatted: Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Subcircuits

X<subcircuit_name> adds an instance of a subcircuit to your netlist. You must already have defined that subcircuit in your netlist by using a . SUBCKT command.

Syntax

X<subcircuit_name> n1 <n2 n3 ...> subnam
<parnam = val $\&><\mathrm{M}=\mathrm{val}><\mathrm{S}=\mathrm{val}><\mathrm{DTEMP}=\mathrm{val}>$
\qquad -
n1...
Node names for external reference.
$\overline{\text { subnam }} \frac{}{\text { Subcircuit model reference name. }}$ *
ubnam
Subcircuit modelreference name.
parameter name set to-a value (val) for use only in the subcircuit. It overrides-a parameter value in the
subcircuit definition, but is overridden by a value set in a-PARAM statement.
$\ldots \quad$ Formatted: Numbered + Level: $1+$ Numbering Style: $1,2,3, \ldots+$ Start at: $1+$ Alignment: Left + Aligned at: 0.25 " + Indent at: $0.5^{\prime \prime}$

Formatted: Heading 1, Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Subckt scoping rules

Formatted: Font: Arial, 20 pt, Character scale: 100\%

Formatted: Heading 1, Indent: Left: 0" Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: Arial, 20 pt

A subckt or model definition must occur in the subckt in which the subckt or model is referenced, or in a calling subckt at any level above. .

Formatted: Font: Arial, Character scale: 100\%

Formatted: Font: Arial

Formatted: Heading 1, Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

F Formatted: Font color: Black
Formatted: Numbered + Level: $1+$
Numbering Style: $1,2,3, \ldots+$ Start at: $1+$
Alignment: Left + Aligned at: $0.25^{\prime \prime}+$ Indent at: 0.5 "

15. .INCLUDE

Includes another file's contents netlist in the current file as a subcircuit of the current netlist.

Syntax

```
..INCLUDE 'file_path file_name'.
.inc 'file_path file_name'.
```

Arguments

Argument Description

file_path Path name of a file for computer operating systems that support treestructured directories.
An include file can contain nested .INCLUDE calls to itself or to another include file. If you use a relative path is used in a nested .INCLUDE call, the path starts from the directory of the parent .INCLUDE file, not from the current working directory. If the path starts from the current working directory, IBIS-ISS canmay also find the .INCLUDE file, but prints a warning.
file_name . Name of a file to include in the data file. The file path, plus the file name, canmay be up to 16 characters long. You can use aAny valid file name-name valid for-under the computer's operating system may be used.

Description

Use this command to include another netlist in the current netlist. You can include-Aa netlist may be used as a subcircuit in one or more other netlists. You must enclose tThe file path and file name shall be enclosed in single or double quotation marks._Otherwise, an error message is generated.

Example

. INCLUDE `/myhome/subcircuits/diode_circuit'

Formatted: Font: Helvetica, 12 pt, Font color: Black
Formatted: Font: Bold
Formatted: Font: (Default) Courier New, 12 pt, Not Bold, Font color: Black
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, 12
pt, Not Bold, Font color: Black
Formatted: Font: (Default) Courier New
Formatted: Font: Helvetica, 11 pt, Not Bold, Italic, Font color: Black
Formatted: Font: Italic

Formatted: Font: Helvetica, 11 pt, Not Bold, Italic, Font color: Black
Formatted: Font: Italic

Formatted: Indent: Left: 0"
Formatted: Font: 12 pt, Not Bold
Formatted: Code, Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

```
Node Name (or Node Identifier) Conventions
Nodes are the points of connection between elements in the input
netlist. Either names or numbers may be used to designate
nodes. Node numbers can be from 1 to 999999999999999 (1 to 1e16-
1); node number 0 is always ground. Letters that follow numbers
in node names are ignored.
When the node name begins with a letter or a valid special
character, the node name can contain a maximum of }102
characters.
Subcircuit Node Names
Two subcircuit node names are assigned in this format.
To indicate the ground node, use either the number 0, the name
GND, or !GND, or GROUND, GND!. Every node should have at least two
eonnections, except for transmission line nodes (unterminated
transmission lines are permitted) and MOSFET substrate nodes
(which have two internal connections).
Element, Instance, and Subcircuit Naming Conventions
Instances and subcircuits are elements and as such, follow the
naming conventions for elements.
Element names begin with a letter designating the element type,
followed by up to 1023 alphanumeric characters. Element type
letters are R for resistor, C for capacitor and so on.
```


8.Comments-and Line-Continuation

Comments require an asterisk (*) as the first character in a line or a dollar sign (\$) directly in front of the comment anywhere on the line. For example:

```
* <comment_on_a_line_by_itself>
```

Comment statements may appear anywhere in the circuit description. The dollar sign (\$) must be used for comments that do not begin in the first character position on a line (for example, for comments that follow simulator input on the same line). If it is not the first nonblank character, then the dollar sign must be preceded by either:

```
Note: Whitespace
Note: Comma (,)
Note: Valid numeric expression
```

The dollar sign may also be used within node or element names. For example:

* RF=1K GAIN SHOULD BE 100
\$ MAY THE FORCE BE WITH MY CIRCUITCIRCUIT EXAMPLE
VIN 10 PL 00 5V 5NS \$ 10v 50ns
R12 10 1MEG \$ FEED BACK
.PARAM $a=1 w \$$ comment $a=1, w$ treated as a space and ignored .PARAM $a=1 k \$ c o m m e n t ~ a=1 e 3, k$ is a scale factor

A dollar sign is the preferred way to indicate comments, because of the flexibility of its placement within the code.

Line continuations require a plus sign (+) as the first character in the line that follows. Here is an example of comments and line continuation in a netlist file:

```
.ABC Title Line
* on this line, because the first line is always a comment)
* This is a comment line
MODEL n1 NMOS $ this is an example of an inline comment
* This is a comment line and the following line is a
continuation
```

Formatted: Font: Italic

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Automatically adjust right indent when grid is defined, No bullets or numbering Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: Courier New

Model Definitions (.MODEL Statements)

Model definitions are used to specify the electrical parameters for W-element • and S-element instances. They can be considered a special form of subcircuit definition, in which the defined subcircuit is only available to W - and S elements.
The specific syntax for W-element and S-element .MODEL definitions are detailed below, as part of the W-element and S-element portions of the IBISISS specification. Note that .MODEL statements are hierarchically at the same level as element instances.

Formatted: Body

Formatted: Character scale: 0\%

9.Subcircuit Definitions

```
    Syntax
.subckt name n1 n2...
statement
statement
statement
:-
.ends
```


1. Subckt Scoping Rules

A .subckt or .model definition must occur in the subckt in which the subckt or model is Numbering Style: 1, 2, 3,... + Start at: $1+$ Alignment: Left + Aligned at: $0.25^{\prime \prime}+$ Indent
at: $0.5^{\prime \prime}$
$+$

10. Subcircuit Definition Ending Statements

Subcircuit definitions must be ended with the .ends token. See Subcircuit * Definitions above for syntax and examples.

Formatted: Normal, Indent: Left: $0.5^{\prime \prime}$

Formatted: Font: Arial
Formatted: Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

11. + LEVEL=3

- Formatted: Font: (Default) Courier New

Formatted: Heading 1, Left, Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Elements

1. Subcircuits

Formatted: Heading 2, Numbered + Level: 1 + Numbering Style: $1,2,3, \ldots+$ Start at: $1+$ Alignment: Left + Aligned at: $0.25^{\prime \prime}+$ Indent at: $0.5^{\prime \prime}$

Using Subcircuits

Reusable cells are the key to saving labor in any CAD system. This also applies to circuit simulation, in IBIS-ISS

- To create and simulate a reusable circuit, construct it as a subcircuit.

■ Use parameters to expand the utility of a subcircuit.

X<subcircuit name> creates an instance of a subcircuit. . The subcircuit must have already been defined elsewhere in the IBIS-ISS file using a . SUBCKT command.

Syntax
Xxxxx n1 [n2 n3 ...] subnam
[parnam = val] [M = val]

Argument	Definition
X<subcircuit name>	Subcircuit element name. Must begin with an X , followed by up to 15 alphanumeric characters.
n1...	Node names for external reference.
subnam	Subcircuit model reference name.
Parnam	A parameter name set to a value (val) for use only in the subcircuit. It overrides a parameter value in the subcircuit definition, but is overridden by a value set in a . PARAM Statement.
\underline{M}	Multiplier

2. Linear Resistors

Syntax

Rxxx nodel node2 [$\mathrm{R}=$] value
The value of a linear resistor canmay be a constant, or an expression of parameters.

ParameterToken Description

Rxxx

Rxxx Name of a resistor
node1 and node2 Names or numbers of the connecting nodes
value resistance value, in ohms
3. Linear Capacitors

Syntax

Cxxx nodel node2 [C=] value
The value of a linear capacitor canmay be a constant, or an expression of parameters.

ParameterTok Description
 en

Cxxx \quad Name of a capacitor. Must begin with C, followed by up to 1023 alphanumeric characters.
node1-and Names or numbers-of connecting nodes.
node2.
value . Ceapacitance value, in fFarads.

4. Voltage Shunt

This-A voltage shunt creates a short between nodes node1 and node2two nodes.

Formatted: Heading 2

Formatted: Font: Helvetica, Font color: Black
Formatted: Font: Helvetica

Formatted: Font: Helvetica-Bold, Font color: Black

Formatted: Heading 2, Tab stops: Not at
$1.14^{\prime \prime}+1.6^{\prime \prime}+2.04^{\prime \prime}+2.5^{\prime \prime}+2.94^{\prime \prime}+3.39^{\prime \prime}$
$+3.85^{\prime \prime}+4.29^{\prime \prime}+4.75^{\prime \prime}+5.19^{\prime \prime}$

Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black
Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black

Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black

Formatted: Font: Italic
Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black

Formatted: Font: Italic
Formatted: Font: Helvetica
Formatted: Font: Helvetica-Bold, Font color: Black

Formatted: Heading 2, Tab stops: Not at
$1.14^{\prime \prime}+1.6^{\prime \prime}+2.04^{\prime \prime}+2.5^{\prime \prime}+2.94^{\prime \prime}+3.39^{\prime \prime}$

+ 3.85" + 4.29" + 4.75" + 5.19"

Formatted: Tab stops: Not at 1.14 " $+1.6^{\prime \prime}+$ $2.04^{\prime \prime}+2.5^{\prime \prime}+2.94^{\prime \prime}+3.39^{\prime \prime}+3.85^{\prime \prime}+$ 4.29 " $4.75^{\prime \prime}+5.19 "$

Formatted: Font: Italic
Formatted: Font: Courier, Italic, Font color: Black

Formatted: Font: Italic

5. Mutual Inductors

Formatted: Font: Helvetica, Font color: Black
Formatted: Font: Helvetica

Formatted: Heading 2
Formatted: Syntax, Tab stops: 1.14", Left + 1.6", Left + 2.04", Left + 2.5", Left + 2.94", Left + 3.39", Left + 3.85", Left + 4.29", Left + 4.75", Left + 5.19", Left
Formatted: Font: Helvetica

K=coupling
Coefficient of mutual coupling. KThis is a unitless number, with magnitude >0. If K-the coupling coefficient is negative, the direction of coupling reverses. This is equivalent to reversing the polarity of either of the coupled inductors. Use the K=coupling-xxx syntax when defining the coupling coefficient using a parameter value-name or an equation, and t. The keyword-pre-defined parameter " $k=$ " eanmay be omitted.

Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black

Formatted: Font: Helvetica, 11 pt, Italic, Font color: Black

6. Linear Inductors

Syntax

```
Lxxx node1 node2 [L =] inductance
```

ParameterToken	Description
Lxxx	Name of an inductor.
node1,and_node2. Names or numbers of the connecting nodes.	
inductance	

7. T-element (Ideal Transmission Lines)

Syntax

General form:
TXXx in refin out refout $Z 0=v a l ~ T D=v a l ~[L=v a l] ~]$
$+[I C=v 1, ~ i 1, ~ v 2, ~ i 2]$

Formatted: Character scale: 0\%
Formatted: Body

Formatted: Font: 11 pt, Not Bold, Italic
Formatted: Font: 11 pt, Not Bold, Italic
Formatted: Font: Italic
Formatted: Font: 11 pt, Not Bold, Italic
Formatted: Font: Italic
Formatted: Indent: Left: 0.5"
Formatted: Heading 2, Indent: Left: 0", Automatically adjust right indent when grid is defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Formatted: Indent: Left: 0.5"
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, Italic
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, Italic
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, Italic
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, Italic
Formatted: Font: (Default) Courier New
Formatted: Font: (Default) Courier New, Italic

ParameterTok en	Description Txxx
InLossless transmission line element name. Must begin with T, followed by up to 1023 alphanumeric characters.	
Refin	Ground reference for the input signal.
Out	Signal output node.
Refout	Characteristic impedance of the transmission line (Ohms).
Z0	Propagation time delay of the transmission line (in seconds). If physical length (L) is specified, then units for TD are considered in seconds per meter.
TD	Physical length of the transmission line, in units of meters. Default=1.

Describes how to use basic transmission line simulation equations and an optional method for computing the parameters of transmission line equations.

The W-element is a versatile transmission line model that you can apply to efficiently and accurately simulate transmission lines, ranging frommay be used to describe a variety of transmission line structures, from -a simple lossless line to complex frequency-dependent lossy-coupled lines.

Input Syntax for the W-element

Syntax:

```
Wxxx il i2 ... iN iR ol o2 ... oN oR N=val L=val
+ [RLGCMODEL=name | TABLEMODEL=name-]
```

Parametertoken	Description
N	Number of signal conductors (excluding the reference conductor).
i1...iN	Node names for the near-end signal-conductor terminal
iR	
o1... oN	Node names for the far-end signal-conductor terminal
oR	
L	
RLGCMODE name for the far-end reference-conductor terminal.	

The W-element supports twohese formats to specify transmission line properties:

Fable 5- FormatModel 1: RLGC_-Model-specification
3.-_Internally specified in a . MODEL statement.
4.-_Externally specified in a different file.

Table 5- FormatModel 24: Frequency-dependent tabular specificationmodel.
PNormally, you can specify parameters in the W-element eard-element declaration may be declared in any order. Specify the number of signal conductors, N , after the list of nodes. You can intermix tThe nodes and parameters in the W-element cardelement declaration may be interspersed.

Input ModelFormat 1: W-element, RLGC Model

Equations and Parameters on page 96 (NOTE: Do we want to include these explanations) describes the inputs of the W -element per unit length matrices: R_{0} (DC resistance), L, G, C, R_{S} (skin effect), and G_{d} (dielectric loss)
The W-element does not limit any of the following parameters:
Fable 5- Number of coupled conductors.
Table 5■ Shape of the matrices.
Fable 5-■ Line loss.
Fable 5- Length or amount of frequency dependence.
The RLGC text file contains frequency-dependent RLGC matrices per unit length. The W-element also handles frequency-independent RLGC, and lossless (LC) lines. It does not support RC lines.
Because RLGC matrices are symmetrical, the RLGC model specifies only the lower triangular parts of the matrices. The syntax of the RLGC model for the W -element is:

```
.MODEL name W MODELTYPE=RLGC N=val
+ Lo=matrix_entries
+ Co=matrix_entries [Ro=matrix_entries Go=matrix_entries]
+ Rs=matrix_entries wp=val Gd=\overline{matrix_entries Rogñd=val}
+ Rsgnd=val Lgnd=val
```

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: 0.69"

Formatted: Heading 3

Formatted: Indent: Left: 0.69", Hanging:
0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$

+ Indent at: 0.69

Formatted: Font: Italic

Parameter Description

Token
$\mathrm{N} \quad$ Number of conductors (same as in the element card).

L

$$
\text { DC inductance matrix, per unit length }\left[\frac{\mathrm{H}}{\mathrm{~m}}\right]
$$

C
DC capacitance matrix, per unit length $\left[\frac{F}{m}\right]$

Ro
DC resistance matrix, per unit length $\left[\frac{\Omega}{m}\right]$

Go
DC shunt conductance matrix, per unit length $\left[\frac{S}{m}\right]$.

Rs
Skin effect resistance matrix, per unit length $\left[\frac{\Omega}{m \sqrt{\mathrm{~Hz}}}\right]$.

Gd
Dielectric loss conductance matrix, per unit length $\left[\frac{S}{m \cdot H z}\right]$.
wp Angular frequency of the polarization constant [radian/sec] (see Introduction to the Complex Dielectric Loss Model on page 99)). When the wp value is specified, the unit of Gd becomes [S / m].

Lgnd
DC inductance value, per unit length for grounds $\left[\frac{\mathrm{H}}{\mathrm{m}}\right]$ (reference line).

Rognd
DC resistance value, per unit length for ground $\left[\frac{\Omega}{m}\right]$.

Rsgnd

$$
\text { Skin effect resistance value, per unit length for ground }\left[\frac{\Omega}{m \sqrt{\mathrm{~Hz}}}\right] \text {. }
$$

The following input netlist file shows RLGC input for the W-element:

```
* W-Element example, four-conductor line
W1 N=3 1 3 5 0 2 4 6 0 RLGCMODEL=example_rlc l=0.97
```

* RLGC matrices for a four-conductor lossy
.MODEL example rlc W MODELTYPE=RLGC $N=3$
$+\mathrm{LO}=$
$+2.311 e-6$
$+4.14 e-72.988 e-6$
$+8.42 e-85.27 e-72.813 e-6$
$+\mathrm{CO}=$
+ 2.392e-11
$+-5.41 e-122.123 e-11$
$+-1.08 e-12-5.72 e-122.447 e-11$
$+\mathrm{RO}=$
$+42.5$
$+041.0+0033.5$
$+\mathrm{GO}=+0.000609$
$+-0.00014190 .000599$
$+-0.00002323-0.000090 .000502$
$+\mathrm{Rs}=$
$+0.00135$
$+00.001303$
$+000.001064$
+ Gd=
$+5.242 \mathrm{e}-13$
+ -1.221e-13 5.164e-13
$+-1.999 e-14-7.747 e-14 \quad 4.321 e-13$

Using RLGC Matrices

RLGC matrices in the RLGC model of the W-element are in the Maxwellian format

Input ModelFormat 24: Frequency-Dependent Tabular

SpecificationModel

You can use tThe tabular RLGC model may be used as an extension of the analytical RLGC model to model any arbitrary frequency-dependent behavior of transmission lines (this model does not support RC lines).

You can use this extension of tThe W-element syntax to specify a supports table models of data (use a .MODEL statement of type w). To accomplish this, the .MODEL statement refers to .MODEL statements where the "type" is SP (described in Small-Signal Parameter Data Frequency Table Model (SP Model) on page 77), which contain the actual table data for the RLGC matrices.

Table 10-Note:

To ensure accuracy, the W-element tabular model requires the following:
Table 5—R and G tables require zero frequency points.
Fable 5- L and C tables require infinity frequency points as well as zero frequency points.
To specify a zero frequency point, you may use the pre-defined DC keyword parameter may be used. Alternatively, or the $f=0$ data entry parameter -in the DATA field of the SP model may be set to a value of 0 . To specify an infinity frequency point, use the INFINITY keyword-tokenof the SP model.
See also, Small-Signal Parameter Data Frequency Table Model (SP Model) on page 77.

Notation Used

Table 5 Lower-case variable: Scalar quantity
Table 5 Upper-case variable: Matrix quantity
Fable 5-All upper-case words: Keyword
Table 5 Parentheses and commas: Optional

FableW-element Model Definition Card-Syntax

```
.MODEL name W MODELTYPE=TABLE [FITGC=0|1] N=val
+ LMODEL=l_freq_model CMODEL=c_freq_model
+ [RMODEL=\overline{r}}\mathrm{ freq model GMODEL=}\overline{g}\mathrm{ freq model]
```


ParameterTo Description
 ken

FITCG Keyword-Pre-defined parameter token for the W-Model (w/-element with MODELTYPE=TABLE). A value of $1=$ instructs the tool to run a causality check on the data. 'A value of $0=$ turns any causality checking off (default)

N Number of signal conductors (excluding the reference conductor).

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: 0.69"

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: 0.69"

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69{ }^{\prime \prime}$ +Indent at: 0.69"

LMODEL SP model name for the inductance matrix array.

CMODEL SP model name for the capacitance matrix array.

RLMODEL SP model name for the resistance matrix array. By default, it is zero.

GMODEL SP model name for the conductance matrix array. By default, it is zero.

9. S-element-Syntax

Use the following S-element syntax to show the connections within a circuit:An S-element is a frequency-domain set of network data, described using scattering parameters.

Syntax

```
Sxxx ndl nd2 ... ndN [ndRef]
+ {MNAME=Smodel name`
+ [FBASE = base_frequency] [FMAX=maximum_frequency]
```

ParameterToken Description
nd1 nd2...ndN Nodes of an S-element Three kinds of definitions are present:
1.■ With no reference node ndRef, the default reference node is GND. Each node ndi ($\mathrm{i}=1 \sim \mathrm{~N}$) and GND construct one of the N ports of the S-element.

1. With one reference node, ndRef is defined. Each node nd ($\mathrm{i}=1 \sim \mathrm{~N}$) and the ndRef construct one of the N ports of the S-element.
2. With an N reference node, each port has its own reference node. TYou can write the node definition may be written more clearlyin a clearer way as:
nd1+ nd1- nd2+ nd2- ... ndN+ ndN-
Each pair of the nodes (ndi+ and ndi-, $\mathrm{i}=1 \sim \mathrm{~N}$) constructs one of the N ports of the S-element.
ndRef
Reference node

MNAME \quad Name of the S model; Note that string parameters are supported in calling an MNAME.

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Indent: Left: 0", Hanging: 0.19", Bulleted + Level: $1+$ Aligned at: $0 "+$ Indent at: 0", Tab stops: Not at $0.5^{\prime \prime}$

FBASE Base frequency to use for transient analysis. This value becomes the base frequency point for Inverse Fast Fourier Transformation (IFFT).
3.-If you do not set this value is not set, the base frequency is a 4 reciprocal value of the transient period.
4. If you set a frequency that is smaller than the reciprocal value of the transient, then transient analysis performs circular convolution, and uses the reciprocal value of FBASE as its base period.

FMAX
Maximum frequency use in transient analysis. Used as the maximum frequency point for Inverse Fast Fourier Transformation (IFFT).

The nodes of the S-element must come first. You can specify all the optional parameters in both the S-element and S model statements, except for MNAME argument.
You can enter tThe optional arguments may be entered in any order, and the parameters specified in the element statement have a higher priority.

1.Figure 27 Terminal Node Notation

Node Example

The following example illustrates the nd1 nd2...ndN—no reference, single reference, and multi-reference parameters.

[^0]Formatted: Indent: Left: 0", Hanging: 0.19" Bulleted + Level: 1 + Aligned at: 0 " + Indent at: 0 ", Tab stops: Not at $0.5^{\prime \prime}$

Formatted: Indent: Left: 0.69", Hanging: 0.9", Bulleted + Level: $1+$ Aligned at: 0.69 " + Indent at: 0.69 ", Tab stops: Not at $0.5^{\prime \prime}$

```
* no reference
S_no_ref n1 n2 mname=s_model
* single reference
S_one_ref n1 n3 gnd mname=s_model
*multi-reference
S_multi_ref n1 gnd n4 gnd mname=s_model
```

The S-element must have a call to one of the supported S-parameter file formats (IBIS-ISS gets the number of ports from the S-parameter file Youcan also explicitly specify The number of ports, ' n ', may be specified explicitly as $\mathrm{N}=\mathrm{n}$ where ' n ' is the number of ports.:
Fable 5-_For n terminals, the S-element assumes no reference node.
Fable 5- For n+1 terminals, the S-element assumes one reference node.

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: 0.69"

S Model Syntax

Use the following syntax to describe specific S models:

```
.MODEL Smodel_name S [N=dimension]
+ [TSTONEFILE=filename
+ [FBASE=base_frequency] [FMAX=maximum_frequency]
```


ParameterToken Description

Smodel_name Name of the S model.

S
Specifies that the model type is an S model.

N
S model dimension, which is equal to the terminal number of an S-element and excludes the reference node.

TSTONEFILE	Specifies the name of a Touchstone file. Data contains frequencydependent array of matrixes. Touchstone files must follow the .s\#p file extension rule, where \# represents the dimension of the network. Note that string parameters are supported for TSTONEFILE Example: .subckt sparam n1 n2 tsfile=str('ss_ts.s2p') S1 n1 n2 0 mname=s_model .model s_model S TSTONEFILE=str(tsfile) .ends x1 A B sparam tsfile=str('ss_ts.s2p') For details, see Touchstone ${ }^{\circledR}$ File Format Specification by the EIA/IBIS Open Forum (http://www.eda.org).
FBASE	Base frequency used for transient analysis. IBIS-ISS uses this value as the base frequency point for Fast Inverse Fourier Transformation (IFFT). 2. If FBASE is not set, IBIS-ISS uses a reciprocal of the transient period as the base frequency. 3.-If FBASE is set smaller than the reciprocal value of transient period, transient analysis performs circular convolution by using the reciprocal value of FBASE as a base period.
FMAX	Maximum frequency for transient analysis. Used as the maximum frequency point for Inverse Fast Fourier Transform (IFFT).

Formatted: Indent: Left: 0", Hanging: 0.19", Bulleted + Level: 1 + Aligned at: 0 " + Indent at: 0", Tab stops: Not at $0.5^{\prime \prime}$

The, TSTONEFILE parameters describe the frequency-varying behavior of a network.
10. E-element (Voltage-Controlled Voltage Source_(VCVS)

This section explains the E-element syntax and parameters.

Linear

EXxx $n+n-$ [VCVS] in+ in- gain

For a description of these parameters, see table VCVS Parameters.

Laplace Transform

Voltage Gain H(s):
Exxx n+ n- LAPLACE in+ in- ko, kl, ..., kn_la do, d1, ..., dm

For a description of these parameters, see table VCVS Parameters.
$\mathrm{H}(\mathrm{s})$ is a rational function,-in the following form:You can use, with parameters used-parameters to define the values of all coefficients ($k_{0}, k_{1}, \ldots, d_{0}, d_{1}, \ldots$).

Pole-Zero Function

Voltage Gain $\mathrm{H}(\mathrm{s})$:
Exxx n+ n- POLE in+ in- a azl, fzl, ..., azn, fzn / b, + ap1, fp1, ..., apm, fpm
For a description of these parameters, see table VCVS Parameters.
The following equation defines $\mathrm{H}(\mathrm{s})$ in terms of poles and zeros:
$H(s)=\frac{a \cdot\left(s+\alpha_{z 1}-j 2 \pi f_{z 1}\right) \ldots\left(s+\alpha_{z n}-j 2 \pi f_{z n}\right)\left(s+\alpha_{z n}+j 2 \pi f_{z n}\right)}{b \cdot\left(s+\alpha_{p 1}-j 2 \pi f_{p 1}\right) \ldots\left(s+\alpha_{p m}-j 2 \pi f_{p m}\right)\left(s+\alpha_{p m}+j 2 \pi f_{p m}\right)}$
The complex poles or zeros are in conjugate pairs. The element description specifies only one of them, and the program includes the conjugate. You can use pParameters may be used to specify the a, b, α, and f values.

Example

Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Heading 3

Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Heading 3

Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Code, Space After: $0 \mathrm{pt}, \mathrm{Tab}$ stops: Not at $1.14^{\prime \prime}+1.6^{\prime \prime}+2.04 "+2.49^{\prime \prime}+$ $2.94^{\prime \prime}+3.39^{\prime \prime}+3.85^{\prime \prime}+4.29^{\prime \prime}+4.74^{\prime \prime}+$ 5.19"

The Elow_pass statement describes a low-pass filter, with the transfer function:

$$
H(s)=\frac{1.0}{1.0 \cdot(s+1)(s+0.5+j 2 \pi \cdot 0.1379)(s+0.5-(j 2 \pi \cdot 0.1379))}
$$

Fable 5
A

Formatted: Indent: Left: 1", No bullets or numbering
Formatted: BulletPrev

Foster Pole-Residue Form

Gain $E(s)$ form

```
ExXX n+ n- FOSTER in+ in- k0 kl
\mp@subsup{_}{}{+}(Re{A1}, Im{A1})/(Re{p1}, Im{p1})
+(Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...
```

For a description of these parameters, see table VCVS Parameters.
In the above syntax, parenthesis, commas, and slashes are separators-they have the same meaning as a space. A pole-residue pair is represented by four numbers (real and imaginary part of the residue, then real and imaginary part of the pole).
You must make sure that $\operatorname{Re}[\mathrm{pi}]<0$; otherwise, the simulations will certainly diverge. Also, it is a good idea to assure passivity of the model (for an N-port admittance matrix $\mathrm{Y}, \operatorname{Re}\{\mathrm{Y}\}$ should be positive-definite), or the simulation is likely to diverge).

Fable 10-Note:

For real poles, half the residue value is entered because it is applied twice. In the above example, the first pole-residue pair is real, but is written as "A1/(s$\mathrm{p} 1)+\mathrm{A} 1 /(\mathrm{s}-\mathrm{p} 1) "$; therefore, 0.0004 is entered rather than 0.0008 .

Table VCVS Parameters.

E-element Parameters

The E-element parameters are described in the following list.

ParameterToken	Description
Exxx	Voltage-controlled element name. Must begin with E, followed by up to 1023 alphanumeric characters.
gain	Voltage gain.
in +/-	Positive or negative controlling nodes. Specify one pair for each dimension.
K	Ideal transformer turn ratio: $\mathrm{V}(\mathrm{in}+, \mathrm{in}-)=k \cdot \mathrm{~V}\left(\mathrm{n}^{+}, \mathrm{n}-\right)$ or, number of gates input.
n+/-	Positive or negative node of a controlled element.
VCVS	Keyword-Pre-defined token for a voltage-controlled voltage
	source. VCVS is a reserved word; do not use it as a node name.

11. Current-Dependent Current Sources - F-element (Current- Controlled Current Source)s
This section explains the F-element syntax and parameters.
Fable 10-Note:
G-elements with algebraic expressions make F-elements obsoletemay be used to duplicate the functions of an F-element. You can still use Felements for backward-compatibility with existing designs.
Current-Controlled Current Source (CCCS) Syntax

LinearSyntax

Fxxx $n+n-[<C C C S] \rightarrow$ vnl gain

F-element Parameters

The F-element parameters are described in the following list.

ParameterTo ken	Description
cCCS	Keyword-Pre-defined token for current-controlled current source. CCCS is a
Fxxx	Element name of the current-controlled current source. Must begin with F, followed by up to 1023 alphanumeric characters.
gain	Current gain.
n+/-	Connecting nodes for a positive or negative controlled source.
vn1 ...	Names of voltage sources, through which the controlling current flows. Specify one name for each dimension.
x1, ..	Controlling current, through the vn1 source. Specify the x values in increasing order.

CCCS Keyword-Pre-defined token for current-controlled current source. CCCS is a IBIS-ISS reserved keyword; do not use it as a node name.

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Font: (Default) Helvetica
Formatted: Indent: Left: 0.69", Hanging:
0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: 0.69"

Formatted: NotePara
$y 1, \ldots \quad$ Corresponding output current values of x.

Formatted: Heading 2

12. Voltage-Dependent Current Sources- G-element (VoltageControlled Current Source)s

This section explains G-element syntax statements, and their parameters.
-GXXX $n+n-<V C C S \mid>i n+i n-.$.

Formatted: Heading 3, Tab stops: Not at
$1.14^{\prime \prime}+1.6^{\prime \prime}+2.04^{\prime \prime}+2.5^{\prime \prime}+2.94 "+3.39^{\prime \prime}$ $+3.85^{\prime \prime}+4.29^{\prime \prime}+4.75^{\prime \prime}+5.19^{\prime \prime}$

Formatted: Heading 3

Voltage-Controlled Current Source (VCCS)

Linear

GXxx n+ n- $[<\operatorname{VCCS}] \Rightarrow$ in+ in- transconductance
For a description of the G-element parameters, see Table VCCS Parameters.

Laplace Transform

Transconductance $\mathrm{H}(\mathrm{s})$:
Gxxx n+ n- LAPLACE in+ in- k0, kl, ..., kn_ do, d1, ..., dm
$\mathrm{H}(\mathrm{s})$ is a rational function, in the following form:
$H(s)=\frac{k_{0}+k_{1} s+\ldots+k_{n} s^{n}}{d_{0}+d_{1} s+\ldots+d_{m} s^{m}}$
You can use pParameters may be used to define the values of all coefficients $\left(k_{0}, k_{1}, \ldots, d_{0}, d_{1}, \ldots\right)$.

Pole-Zero Function

Formatted: Heading 3

Transconductance $\mathrm{H}(\mathrm{s})$:

```
Gxxx n+ n- POLE in+ in- a azl, fzl, ..., azn, fzn_l b,
+ ap1, fp1, ..., apm, fpm
```

The following equation defines $\mathrm{H}(\mathrm{s})$ in terms of poles and zeros:
$H(s)=\frac{a \cdot\left(s+\alpha_{z 1}-j 2 \pi f_{z 1}\right) \ldots\left(s+\alpha_{z n}-j 2 \pi f_{z n}\right)\left(s+\alpha_{z n}+j 2 \pi f_{z n}\right)}{b \cdot\left(s+\alpha_{p 1}-j 2 \pi f_{p 1}\right) \ldots\left(s+\alpha_{p m}-j 2 \pi f_{p m}\right)\left(s+\alpha_{p m}+j 2 \pi f_{p m}\right)}$
The complex poles or zeros are in conjugate pairs. The element description specifies only one of them, and the program includes the conjugate. You can use parameters to specify the a, b, α, and f values.
For a description of the G-element parameters, see table VCVS Parameters.

Example

Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0/1.0 0.001,0.0
The Ghigh_pass statement describes a high-pass filter, with the transfer function:

$$
H(s)=\frac{1.0 \cdot(s+0.0+j \cdot 0.0)}{1.0 \cdot(s+0.001+j \cdot 0.0)}
$$

Foster Pole-Residue Form

Formatted: Code, Tab stops: Not at 1.14 " + $1.6^{\prime \prime}+2.04$ " $+2.49^{\prime \prime}+2.94$ " $+3.39^{\prime \prime}$ + $3.85 "+4.29 "+4.74 "+5.19^{\prime \prime}$

Transconductance G(s) form

```
Gxxx n+ n- FOSTER in+ in- k0 kl
+(Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+(Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+(Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...
```

In the above syntax, parenthesis, commas, and slashes are separators-they have the same meaning as a space. A pole-residue pair is represented by four numbers (real and imaginary part of the residue, then real and imaginary part of the pole).
You must make sure that $\operatorname{Re}[\mathrm{pi}]<0$; otherwise, the simulations will certainly diverge. Also, it is a good idea to assure passivity of the model (for an N-port admittance matrix $\mathrm{Y}, \operatorname{Re}\{\mathrm{Y}\}$ should be positive-definite), or the simulation is likely to diverge).
For a description of the G-element parameters, see table VCVS Parameters.

Example

To represent a $G(s)$ in the form,

$$
\begin{aligned}
& G(s)=0.001+1 \times 10^{-12} s+\frac{0.0008}{s+1 \times 10^{10}}+\frac{(0.001-j 0.006)}{s-\left(-1 \times 10^{8}+j 1.8 \times 10^{10}\right)}+ \\
& \frac{(0.001+j 0.006)}{s-\left(-1 \times 10^{8}-j 1.8 \times 10^{10}\right)}
\end{aligned}
$$

Formatted: Code, Tab stops: Not at $1.14{ }^{\prime \prime}+$ $1.6^{\prime \prime}+2.04^{\prime \prime}+2.49^{\prime \prime}+2.94^{\prime \prime}+3.39^{\prime \prime}+$ $3.85^{\prime \prime}+4.29^{\prime \prime}+4.74^{\prime \prime}+5.19^{\prime \prime}$

Fable 10-Note:
For real poles, half the residue value is entered because it is applied twice. In the above example, the first pole-residue pair is real, but is written as "A1/(s-p1)+A1/(s-p1)"; therefore, 0.0004 is entered rather than 0.0008 .

Formatted: Indent: Left: 0.69", Hanging 0.31 ", Bulleted + Level: 1 + Aligned at: $0.69{ }^{\prime \prime}$ + Indent at: 0.69"

Fable VCCS Parameters.

G-element Parameters

The G-element parameters described in the following list.

ParameterToken	Description
Gxxx	Name of the voltage-controlled element. Must begin with G, followed by up to 1023 alphanumeric characters.
in +/-	Positive or negative controlling nodes. Specify one pair for each dimension.
n+/-	Positive or negative node of the controlled element.
transconductance	Voltage-to-current conversion factor.
vccs	Keyword-Pre-defined token for the voltage-controlled current source. VCCS is a reserved IBIS-ISS keyword; do not use it as a node name.
x1, ..	Controlling voltage, across the in+ and in- nodes. Specify the x values in increasing order.
y1,...	Corresponding element values of x.

13. Current-Dependent Voltage Sources - H-element (CurrentControlled Voltage Source)s

This section explains H -element syntax statements, and defines their parameters.
Fable 10-Note:
The E-elements with algebraic expressions s makemay be used to duplicate the function of the H -elements obsolete. You can still use H-elements for backward-compatibility with existing designs.

Current-Controlled Voltage Source (CCVS)

LinearSyntax

Hxxx $n+n-<[C C V S \rightarrow-$ vn1 transresistance

ParameterToken Description

CCVS Pre-defined token Keyword-for the current-controlled voltage source. CCVS is a IBIS-ISS reserved keyword; do not use it as a node name.

Hxxx Element name of current-controlled voltage source. Must start with H , followed by up to 1023 alphanumeric characters.
n+/-
transresistance Current-to-voltage conversion factor.
vn1 ... Names of voltage sources, through which controlling current
flows. You must specify one name for each dimension.
$x 1, \ldots \quad$ Controlling current, through the vn1 source. Specify the x values in increasing order.
$\mathrm{y} 1, \ldots \quad$ Corresponding output voltage values of x.

Formatted: Heading 2

Formatted: Indent: Left: 0.69", Hanging: 0.31 ", Bulleted + Level: $1+$ Aligned at: $0.69 "$ + Indent at: $0.69^{\prime \prime}$

Formatted: Font: Italic
Formatted: Font: Italic

List Paragraph, Bulleted + Level: 1 + Aligned at: 0.25 " + Indent at:
 $0.5 "$

[^0]: **S-parameter example

