
1

IBIS Interconnect SPICE Subcircuits Specification
(IBIS-ISS)

Draft 0.5
July 27, 2010

2

Statement of Changes

 Eliminated or reduced use of terms: token, netlist, command, you
 Defined or refined existing definitions for key concepts: statement, token,

delimiter
 Added table of contents and imposed formatting (as defined under

“Conventions”) to clarify relationships and hierarchies
 Added skeleton text for .subcircuit and .model definitions
 Standardized (for the most part) fonts, typefaces and other visual aspects of the

document per “Conventions” section
 Removed portions of the document conventions that were unused
 Reordered some minor portions of the document to better accommodate the flow

(more like a narrative)
 Clarified existing examples, particularly for comments and expressions
 Added parameter description text to support strings
 Clarified line continuation text

3

Contents
1. Statement of Changes ... 2

1. Overview .. 6

2. Goals and Scope .. 7

3. Conventions ... 10

4. Input Structure and Data Entry ... 11

1. Input File Guidelines .. 11

2. Statements and Tokens ... 11

3. Special Characters ... 13

4. First Character ... 16

5. Delimiters ... 17

6. Instance Names ... 17

7. Numbers... 18

8. Parameters and Expressions ... 19

9. Node Name (or Node Identifier) Conventions .. 20

10. Element, Instance, and Subcircuit Naming Conventions 20

11. Line Continuations ... 21

5. Parameters .. 22

6. File Includes ... 31

7. Comments .. 32

8. Subcircuit Definitions .. 34

1. Subcircuit Scoping Rules ... 34

9. Subcircuit Definition Ending Statements .. 35

10. Elements ... 36

1. Subcircuits .. 36

2. Linear Resistor ... 36

3. Linear Capacitor ... 37

4. Voltage Shunt ... 37

5. Mutual Inductor .. 38

6. Linear Inductor ... 39

7. T-element (Ideal Transmission Line) .. 39

8. W-element (Coupled Transmission Line) ... 41

Format 1: RLGC Model .. 42

4

Format 2: Frequency-Dependent Tabular Specification ... 44

9. S-element ... 50

10. E-element (Voltage-Controlled Voltage Source) .. 54

Linear ... 54

Laplace Transform ... 54

Pole-Zero Function ... 54

Foster Pole-Residue Form ... 55

11. F-element (Current-Controlled Current Source) ... 57

12. G-element (Voltage-Controlled Current Source) .. 58

Linear ... 58

Laplace Transform ... 58

Pole-Zero Function ... 58

Foster Pole-Residue Form ... 59

13. H-element (Current-Controlled Voltage Source) .. 61

14. Common Source Parameters ... 62

11. Best Practices ... 66

5

6

1. Overview
The IBIS Open Forum, in order to enable easier data exchange between users of
signal/power integrity simulation and physical layout/routing software tools, is issuing a
generic netlist format, to be called “IBIS Interconnect SPICE Subcircuits” (IBIS-ISS).

This format is similar in structure and major functions to the SPICE (Simulation Program
with Integrated Circuit Emphasis) nodal syntax developed at the University of California
at Berkeley and since implemented in various forms by individual software tool vendors.
IBIS-ISS is the first industry-wide attempt to standardize SPICE subcircuit
representation.

This version of IBIS-ISS is based on a subset of HSPICE ®, used with permission from
Synopsys, Inc. HSPICE is a registered trademark of Synopsys, Inc.

7

2. Goals and Scope
The syntax of IBIS-ISS is intended to:

 describe interconnect structures (such as PCB traces, connectors, cables, etc.)
electrically, for analysis in a signal integrity and/or power integrity context

 describe the arrangement or topology of interconnect structures, as they relate to
each other and to active devices in a system

To these ends, IBIS-ISS includes support for:

 elementary circuit elements (resistors, capacitors, inductors)
 transmission line elements (lossless and lossy)
 frequency-domain network parameters (e.g., S-parameters)
 parameter/variable passing to elements and subcircuits
 dependent sources
 string-based node naming
 user-defined comments
 abstraction through modular, user-defined subcircuit definitions

IBIS-ISS does NOT include or cover:

 descriptions of complete netlists intended for input “as-is” to simulation tools
 model formats or “process cards” for active devices (e.g., diodes, transistors)
 independent sources
 controls or options for any simulation engine (e.g., precision, algorithm selection)
 simulation or analysis types (e.g., DC, transient)
 sweep or run control (e.g., Monte Carlo)
 geometrical descriptions for field solvers
 support for other kinds of data extraction/export (e.g., S-parameter generation)
 measurement, printing or probing
 encryption support

8

3.

9

10

4. Conventions
The following typographical conventions are used in IBIS-ISS. Note that these
may be combined (e.g., Courier font in bold type).

Table 1: Document Conventions

Convention Description

Courier Indicates statement syntax.

Italic Indicates a user-defined value, where a specific text string
will replace the italics shown in an actual IBIS-ISS file (e.g.,
Rxxxx is a generic representation of a resistor element
name, such as Rname).

Bold Indicates verbatim text in syntax and examples

[] Denotes optional tokens

... Indicates that tokens of the same type may be added as
appropriate to the element structure:

pin1 pin2 ... pin

| Indicates a choice among defined alternatives, such as

low | medium | high

+ Indicates a continuation of a statement across input lines.
Note that continuation may only be used between tokens
and shall not split any single token across lines.

11

5. Input Structure and Data Entry

This section describes the input file and structures for representing input data.

1. Input File Guidelines
An input file consists of a collection of statements describing a portion of a
complete circuit. This input file is intended for inclusion in a larger netlist or
description of a complete circuit, to be used by a simulation tool.

An input filename may be up to 1024 characters long. The input file shall be in
ASCII format (insert IEEE or ANSI definition here). The input file shall not be
in a binary, packed or compressed format.

2. Statements and Tokens
A statement in IBIS-ISS is a text string consisting of tokens and delimiters. An
IBIS-ISS file may contain multiple statements (the number of statements is not
limited by the IBIS-ISS definition, but may be limited by the computer
architecture and/ or operating system used to process the file).

Any individual input statement may be up to 1024 characters long.

Statements in an input file may appear in any order.

Any valid string of characters between two token delimiters is a token.

For the purpose of this specification, statements are grouped into the following
types:

 Element instances

 Parameter definitions

 File includes

 Subcircuit definitions

 Model definitions

 Comments

 Subcircuit ending statements

Subcircuit ending statements, subcircuit definitions, model definitions,
parameter definitions and file includes all begin with the dot (.) character.

The specific syntax of the above statement types are described in the sections
below.

12

 IBIS-ISS ignores differences between upper and lower case in input
statements, except in quoted filenames.

 To continue a statement across multiple lines, the plus (+) sign shall be
used as the first non-numeric, non-blank character of each continued line.
The + sign shall be used only between tokens and token delimiters and
never to split tokens.

 Tokens with extended length (such as paths and expressions) may span
multiple lines using a single whitespace character followed by either a
backslash (\) or a double backslash (\\) at the end of the line containing
the token to be continued on the following line. Note that quoted strings
may only be continued using the double backslash (\\) sequence.

 The following characters are reserved for special use and shall not be
used as part of any parameter or node name:

 () = " ‘

 The following strings are reserved for special use and shall not be used as
part of any parameter or node name in the associated element:

Element Reserved Operators

Capacitor

POLY, TC, SENS

E/G-element AND, DELAY, FOSTER, LAPLACE,
NAND, NPWL, NOR, VCCS, OPAMP,
OR, POLE, POLY, PWL, SPUR,
TRANSFORMER, VCR, VCCAP, VCVS,
FREQ, ZTRANS, VMRF, NOISE,
NOISEFILE, MNAME, PHASE, SCALE,
MAX, PAR

F/H-elements POLY, PWL, AND, NAND, OR, NOR,
VMRF, CCCS, CCVS, DELAY

Port element SIN, PU, PWL, EXP, PULSE, PE, SFFM,
AM, PAT, PL, HB, HBAC, DATA, AC,
DC,
LSAC, SNAC, PHOTO, NEUT, COS,
VMRF, LFSR, PUL, HBLIN, R,
BITSTREAM,
PWLFILE, MOD, FILTER

Inductor POLY, TC, SENS, RELUCTANCE,
TRANSFORMER_NT, FILE

Resistor POLY,TC,SENS

13

S-element ZO, Z0, MNAME

T/U- element IC

W-element RLGCFILE, PRINTZO,
RLGCMODEL,TABLEMODEL,
FSMODEL, UMODEL,
SMODEL

3. Special Characters
The following table lists the special characters that may be used as part of
node names, element parameter names, and element instance names. For
detailed discussion, see the appropriate sections in this chapter.

Note:

To avoid unexpected results or error messages, do not use the following
mathematical characters in a parameter name in IBIS-ISS: * - + ^ and /.

Table 2: IBIS-ISS / Netlist Special Characters

Special Character*

Node Name Instance
Name**

Parameter Name** Comments

 ~ tilde Legal
anywhere

Included only Included only n/a

 ! exclamation
point

Legal
anywhere

Included only Included only n/a

 @ at sign Legal
anywhere

Included only Included only n/a

 # pound sign Legal
anywhere

Included only Included only n/a

 $ dollar sign Included only
(avoid if after a
number in node
name)

Included only Included only In-line comment
character

14

 % percent Legal
anywhere

Included only Included only

n/a

 ^ caret Legal
anywhere

Included only included only
(avoid usage)

“To the power
of”, i.e., 2^5, two
raised to the fifth
power

 & ampersand Legal
anywhere

Included only Included only n/a

 * asterisk Included only
(avoid using in
node names)

Included only included only
(avoid using in
parameter names)

Comment and
wildcard
character.
Double asterisk
(**) is “to the
power of”.

 () parentheses Illegal Illegal Illegal Token delimiter

 - minus Included only

Included only Illegal n/a

 _ underscore Legal
anywhere

Included only Included only n/a

 + plus sign Included only

Included only Included only
(avoid usage)

Continues
previous line,
except for quoted
strings

 = equals Illegal Illegal optional in

.PARAM
statements

Token delimiter

 < > less/more
than

Legal
anywhere

Included only Included only n/a

15

 ? question mark Legal
anywhere

Included only Included only Wildcard
character

 / forward slash Legal
anywhere

Included only Illegal n/a

 { } curly braces included only,
converts to []

Included only Included only Engine shall
auto-convert to
square brackets
([])

 [] square
brackets

Included only Included only Included only n/a

 \ backslash
(requires a
whitespace
before to use
as a
continuation)

Included only Included only Illegal Continuation
character
(preserves
whitespace)

 \\ double
backslash

Included only Illegal Illegal Continuation
character for
quoted strings
(preserves
whitespace)

 | pipe Legal
anywhere

Included only Included only n/a

 , comma Illegal Illegal Illegal Token delimiter

 . period Illegal Included only Included only Statement
identifier, (i.e.,
.PARAMETER,
etc.).

 : colon Included only Included only Included only Delimiter for
element
attributes

16

 ; semi-colon Included only Included only Included only n/a

 " " double-quotes Illegal Illegal Illegal Expression and
filename
delimiter

 ‘ ’ single quotes Illegal Illegal Illegal Expression and
filename
delimiter

 Blank
(whitespace)

Use before \
line (token)
continuations

Illegal Illegal Token delimiter

*“Legal anywhere”=first character or any position in string
“Included only”=any position except first character

** cannot be the first character; element key letter only

4. First Character
The first character in every line specifies how IBIS-ISS interprets the
remainder of the line.

Table 3: First Character Rules

If the First Character is... Indicates

. (period) Statement identifier (e.g.,

.PARAM)

c, C, e, E, f, F, g, G, h, H, ,
k, K, l, L, r, R, s, S, v,
V,w,W

Element instantiation

* (asterisk) Comment line

+ (plus) Continues previous line

17

5. Delimiters
Delimiters separate tokens (strings) in the input file. Input token delimiters are:
tab, blank, comma (,), equal sign (=), and parentheses ().

In addition, single (‘) or double quotes (“) delimit tokens used as expressions
and filenames.

6. Instance Names
The names of element instances begin with the element key letter, except for
subcircuit instances, whose instance names begin with X. Instance names
may be up to 1024 characters long.

Table 4 Element Identifiers

Key
Letter
(First
Char)

Element

Example Line

C Capacitor Cbypass 1 0 10pf

E Voltage-controlled voltage source Ea 1 2 3 4 K

F Current-controlled current source Fsub n1 n2 vin 2.0

G Voltage-controlled current source G12 4 0 3 0 10

H Current-controlled voltage source H3 4 5 Vout 2.0

K Linear mutual inductor (general
form)

K1 L1 L2 1

L Linear inductor LX a b 1e-9

R Resistor R10 21 10 1000

S S-parameter element S1 nd1 nd2 s_model2

V Voltage source V1 8 0 DC=0

18

W Transmission Line W1 in1 0 out1 0 N=1 L=1

T Transmission Line Txxx in 0 out 0 Z0=50
TD=30n

X Subcircuit instance X1 2 4 17 31 MULTI WN=100
LN=5

7. Numbers
Numbers may be entered as integer, floating point, floating point with an
integer exponent, or integer or floating point with one of the scale factors listed
below.

Table 5: Scale Factors

Scale Factor Prefix Symbol Multiplying Factor

T tera T 1e+12

G giga G 1e+9

MEG or X mega M 1e+6

K kilo k 1e+3

MIL n/a none 25.4e-6

M milli m 1e-3

U micro 1e-6

N nano n 1e-9

P pico p 1e-12

19

F femto f 1e-15

A atto a 1e-18

Note:

Scale factor A is not a scale factor in a character string that contains
amps. For example, IBIS-ISS interprets the 20amps string as 20e-18mps
(20-18amps), but it correctly interprets 20amps as 20 amperes of current,
not as 20e-18mps (20-18amps).

 Numbers may use exponential format or engineering key letter format, but
not both (1e-12 or 1p, but not 1e-6u).

 To designate exponents, use D or E.

 Trailing alphabetic characters are interpreted as units comments.

 Units comments are not checked.

8. Parameters and Expressions
 Parameter names shall begin with an alphabetic character. Subsequent

characters in the parameter name shall each be either a digit, or one of
these following characters:

 ! # $ % [] _

 If multiple definitions are given for the same parameter, IBIS-ISS uses the
last parameter definition even if that definition occurs later in the input than
a reference to the parameter.

 A parameter shall be defined before that parameter is used in a definition
for another parameter.

 To delimit expressions, single quotes shall be used

 Expressions cannot exceed 1024 characters.

 Parameters are used in two contexts.

• Parameters in parameter definition statements are strings, defining
names to be used as variables which are assigned specific values by
the statement. These values may be numeric, strings defining an
expression or equation, or strings matching parameters defined
elsewhere.

• Parameters may also appear in element instances, model definitions
and subcircuit definitions. These parameters may be user-defined or
may use names pre-defined by the syntax of the element.

20

• Parameter names are input tokens. Token delimiters shall precede
and follow names.

• Parameter names may be up to 1024 characters long and are not
case-sensitive.

9. Node Name (or Node Identifier) Conventions
Nodes are the points of connection between elements in the input netlist. Only
alphanumeric strings shall be used to designate nodes. If entirely numeric, node
numbers shall be between 1 and 999999999999999 (1 to 1e16-1). A node number of 0
is permitted but is interpreted as ground. Letters that follow a leading number in a node
name are ignored; this means that node strings such as ‘3n5’ and ‘3’ shall be
interpreted as referring to the same node.

When the node name begins with a letter or a valid special character, the node name
may contain a maximum of 1024 characters.

To indicate the ground node, use either the number 0, the name GND, or !GND, or
GROUND, GND!. Every node shall have at least two connections, except for
transmission line nodes (unterminated transmission lines are permitted) and MOSFET
substrate nodes (which have two internal connections).

10. Element, Instance, and Subcircuit Naming Conventions
Instances and subcircuits are elements and as such, follow the naming conventions for
elements.

Element names begin with a letter designating the element type, followed by up to 1023
alphanumeric characters. Element type letters are R for resistor, C for capacitor and so
on.

21

11. Line Continuations
Lines are continued in one of three ways, depending on how input is divided across
the line:

 Statements are continued using the + character

 Tokens are continued using the \\ sequence

 Tokens may also be continued using whitespace followed by the \ character

To continue a statement across multiple lines, the plus (+) sign shall be used as the first
non-numeric, non-blank character of each continued line. The + sign shall be used
only between tokens and token delimiters and never to split tokens.

Here is an example of comments and line continuation in a netlist file:

*This shows continuation of a statement describing a resistor
Rexample
+ n3 n4 R=30

To continue a token with extended length (such as paths and expressions) but
preserve readability, the token shall be split using a single whitespace character
followed by a backslash (\) or a double backslash (\\) without leading whitespace
at the end of the line containing the token to be continued on the following line.

* This shows continuation of a token in a statement, in this
* case an expression, describing a resistor
Rexample n3 n4 R=’sin(30.12345 + 4.356789 – cos(32.67 -\\
234))’

* This shows an identical continuation of a token in a
* statement, in this case an expression, describing a resistor
Rexample n3 n4 R=’sin(30.12345 + 4.356789 – cos(32.67 - \
234))’

22

6. Parameters
Parameters are similar to the variables used in most programming languages.
Parameters hold values assigned when the circuit design is created or that are
calculated based on circuit solution values. Parameters may store static values for a
variety of quantities (resistance, source voltage, rise time, and so on). Parameters may
also be alphabetic strings used with elements where string input is expected (for
example, filenames or model names).

Using Parameters in Simulation (.PARAM)

Defining Parameters

Parameters may be defined using the methods shown below. Note that a
.param statement without an assignment is not permitted.

Table 6: .PARAM Statement Syntax and Examples

Token Description/Example

Simple
Assignment

.PARAM SimpleParam=1e-12

Algebraic
Definition

.PARAM AlgebraicParam=‘SimpleParam*8.2’

.

User-defined
Function

.PARAM MyFunc(x,y)=‘SQRT((x*x)+(y*y))’

String
Assignment

.PARAM StringParam=str(’mystring’)

Subcircuit
Definition

.SUBCKT SubName ParamDefName=Value

Subcircuit
Instance

Xxxx nodename1 ... nodenamen
+ SubName
+ ParamDefName = Value | str('string')

Predefined
Analysis

.PARAM f(a,b)=POW(a,2)+a*b g(d)=SQRT(d)
+ h(e)=e*f(1,2)-g(3)

23

Function

A parameter definition in IBIS-ISS always uses the last value found in the input
netlist. The definitions below assign a value of 3 to the DupParam parameter.

.PARAM DupParam=1

...

.PARAM DupParam=3

IBIS-ISS assigns 3 as the value for all instances of DupParam, including
instances that are earlier in the input than the .PARAM DupParam=3
statement.

All parameter values in IBIS-ISS are IEEE double floating point numbers. The
parameter resolution order is:

1. Resolve all literal assignments.

2. Resolve all expressions.

3. Resolve all function calls.

Table 7 shows the parameter passing order.

Table 7: Parameter Passing Order

.PARAM statement () .SUBCKT call (instance)

.SUBCKT call (instance) .SUBCKT definition (symbol)

.SUBCKT definition (symbol) .PARAM statement ()

Assigning Parameters

The following types of values may be assigned to parameters:

 Constant real number

 Algebraic expression of real values

 Predefined function

 Circuit value

 Model value

 Strings not for algebraic evaluation

24

To invoke the algebraic processor, the complex expression to be evaluated
shall be enclosed in single quotes.

A simple expression consists of one parameter name Simple expressions
shall not be enclosed in single or double quotes.

The parameter keeps the assigned value, unless a later definition changes its
value.

Inline Parameter Assignments

To define circuit values, using a direct algebraic evaluation:

r1 n1 0 R=’1k/sqrt(HERTZ)’ $ Resistance for frequency

Using Algebraic Expressions

In IBIS-ISS, an algebraic expression, with quoted strings, may replace any
parameter.

Some uses of algebraic expressions are:

 Parameters:

.PARAM x=’y+3’

 Algebra in elements:

R1 1 0 r=’ABS(v(1)/i(m1))+10’

The continuation character for quoted parameter strings, in IBIS-ISS, is a
double backslash (\\) (outside of quoted strings, the single backslash (\) is
the continuation character).

Built-In Functions and Variables

In addition to simple arithmetic operations (+, -, *, /), the built-in functions
and variables listed below may be used in IBIS-ISS expressions.

25

Table 8: IBIS-ISS Built-in Functions

IBIS-ISS Form Function Class Description

sin(x) sine trig Returns the sine of x (radians)

cos(x) cosine trig Returns the cosine of x (radians)

tan(x) tangent trig Returns the tangent of x (radians)

asin(x) arc sine trig Returns the inverse sine of x (radians)

acos(x) arc cosine trig Returns the inverse cosine of x (radians)

atan(x) arc tangent trig Returns the inverse tangent of x (radians)

sinh(x) hyperbolic
sine

trig Returns the hyperbolic sine of x (radians)

cosh(x) hyperbolic
cosine

trig Returns the hyperbolic cosine of x (radians)

tanh(x) hyperbolic
tangent

trig Returns the hyperbolic tangent of x (radians)

abs(x) absolute
value

math Returns the absolute value of x: |x|

sqrt(x) square root math Returns the square root of the absolute value
of x: sqrt(-x)=-sqrt(|x|)

pow(x,y) absolute
power

math Returns the value of x raised to the integer
part of y: x(integer part of y)

26

pwr(x,y) signed
power

math Returns the absolute value of x, raised to the
y power, with the sign of x: (sign of x)|x|y

x**y power If x<0, returns the value of x raised to the
integer part of y.

If x=0, returns 0.

If x>0, returns the value of x raised to the y
power.

log(x) natural
logarithm

math Returns the natural logarithm of the absolute
value of x, with the sign of x: (sign of
x)log(|x|)

log10(x) base 10
logarithm

math Returns the base 10 logarithm of the
absolute value of x, with the sign of x: (sign
of x)log10(|x|)

exp(x) exponential math Returns e, raised to the power x: ex

db(x) decibels math Returns the base 10 logarithm of the
absolute value of x, multiplied by 20, with the
sign of x: (sign of x)20log10(|x|)

int(x) integer math Returns the integer portion of x. The
fractional portion of the number is lost.

nint(x) integer math Rounds x up or down, to the nearest integer.

sgn(x) return sign math Returns -1 if x is less than 0.

Returns 0 if x is equal to 0.

Returns 1 if x is greater than 0

sign(x,y) transfer
sign

math Returns the absolute value of x, with the sign
of y: (sign of y)|x|

27

def(x) parameter
defined

control Returns 1 if parameter x is defined.

Returns 0 if parameter x is not defined.

min(x,y) smaller of
two args

control Returns the numeric minimum of x and y

max(x,y) larger of
two args

control Returns the numeric maximum of x and y

[cond] ?x : y ternary
operator

 Returns x if cond is not zero. Otherwise,
returns y.

 .param z=’condition ? x:y’

< relational
operator
(less than)

 Returns 1 if the left operand is less than the
right operand. Otherwise, returns 0.

.para x=y<z (y less than z)

<= relational
operator
(less than
or equal)

 Returns 1 if the left operand is less than or
equal to the right operand. Otherwise,
returns 0.

.para x=y<=z (y less than or equal to z)

> relational
operator
(greater
than)

 Returns 1 if the left operand is greater than
the right operand. Otherwise, returns 0.

.para x=y>z (y greater than z)

>= relational
operator
(greater
than or
equal)

 Returns 1 if the left operand is greater than
or equal to the right operand. Otherwise,
returns 0.

.para x=y>=z (y greater than or equal to z)

== equality Returns 1 if the operands are equal.
Otherwise, returns 0.

.para x=y==z (y equal to z)

28

!= inequality Returns 1 if the operands are not equal.
Otherwise, returns 0.

.para x=y!=z (y not equal to z)

&& Logical
AND

 Returns 1 if neither operand is zero.
Otherwise, returns 0. .para x=y&&z (y AND
z)

|| Logical OR Returns 1 if either or both operands are not
zero. Returns 0 only if both operands are
zero.

 .para x=y||z (y OR z)

Table 12 IBIS-ISS Special Variables

IBIS-ISS Form Function Class Description

time current simulation
time

control Uses parameters to define the current
simulation time, during transient analysis.

temper current circuit
temperature

control Uses parameters to define the current
simulation temperature, during
transient/temperature analysis.

hertz current simulation
frequency

control Uses parameters to define the frequency,
during AC analysis.

29

String Parameters

Parameters may be defined and instantiated using strings, String parameters use
special syntax as tokens such as single quotes (‘), double quotes (“), or curly brackets (
{}) do not work for string parameter definitions or usage.

When defining a parameter that is a character string, the token and delimiter
combination str('string') shall be used to define the parameter, where string is
be the string to be used as the parameter value. When an instance of the parameter is
used, the parameter name is called as str(parameter_name).

IBIS-ISS supports string parameter definition and instantiation for the following netlist
components:

 .PARAM statements
 .SUBCKT statements
 S-parameter FQMODEL in both the S-parameter instance and S-parameter model

and the TSTONEFILE keyword in the S-element
 FILE and MODEL keywords
 W-element keywords RLGCFILE, RLGCMODEL, UMODEL, FSMODEL,

TABLEMODEL, and SMODEL

String parameters may be used as arguments to all model name tokens.

Syntax

Rxxx n1 n2 [mname [str(mname)]] Rval [TC1 [TC2][TC]] [SCALE=val]
+ [M=val] [AC=val] [DTEMP=val] [L=val] [W=val] [C=val]
+[NOISE = val]

Parameter Scoping and Passing

If parameters are used to define values in sub-circuits, fewer similar cells
should be used, to provide enough functionality in the resulting library. Circuit
parameters may be passed into hierarchical designs, and different values may
be assigned to the same parameter within individual cells, when simulations
are run.

A parameter is defined either by a .parameter statement (local to that
subcircuit), or may be passed into a subcircuit, or may be defined on a .subckt
definition line.

.param x=0

30

.subckt def

.param x=1
x1 1 2 abc x=2
.subckt abc 1 2 x=3
.param x=3
r1 1 2 R=x
.ends abc
.ends def
.end

31

7. File Includes

The include statement inserts another file’s contents in the current file at
evaluation.

Syntax

.INCLUDE ‘file_path file_name’

.inc ‘file_path file_name’

Arguments

Argument Description

file_path Path name of a file for computer operating systems that support tree-
structured directories.

An include file can contain nested .INCLUDE calls to itself or to
another include file. If a relative path is used in a nested .INCLUDE
call, the path starts from the directory of the parent .INCLUDE file,
not from the current working directory. If the path starts from the
current working directory, IBIS-ISS may also find the .INCLUDE file,
but prints a warning.

file_name Name of a file to include in the data file. The file path, plus the file
name, may be up to 16 characters long. Any name valid under the
computer’s operating system may be used.

Use this token to include another netlist in the current circuit description. The file path
and file name shall be enclosed in single or double quotation marks.

.INCLUDE `/myhome/subcircuits/diode_circuit´

32

8. Comments
Comments require an asterisk (*) as the first character in a line or a dollar sign ($)
directly in front of the comment anywhere on the line. For example:

* <comment_on_a_line_by_itself>

or

<IBIS-ISS statement> $ <comment following input>

Comment statements may appear anywhere in the circuit description. The dollar sign
($) shall be used for comments that do not begin in the first character position on a line
(for example, for comments that follow simulator input on the same line). If it is not the
first nonblank character, then the dollar sign shall be preceded by either:

 Whitespace
 Comma (,)
 Valid numeric expression

The dollar sign may also be used within node or element names. For example:

* RF=1K GAIN SHOULD BE 100
$ CIRCUIT EXAMPLE
VIN 1 0 PL 0 0 5V 5NS $ 10v 50ns
R12 1 0 1MEG $ FEED BACK
.PARAM a=1w$comment a=1, w treated as a space and ignored
.PARAM a=1k$comment a=1e3, k is a scale factor

A dollar sign is the preferred way to indicate comments, because of the flexibility of its
placement within the code.

33

9. Model Definitions (.MODEL Statements)
Model definitions are used to specify the electrical parameters for W-element
and S-element instances. They can be considered a special form of subcircuit
definition, in which the defined subcircuit is only available to W- and S-
elements.

The specific syntax for W-element and S-element .MODEL definitions are
detailed below, as part of the W-element and S-element portions of the IBIS-
ISS specification. Note that .MODEL statements are hierarchically at the
same level as element instances.

34

10. Subcircuit Definitions

Syntax
.subckt name n1 n2…
statement
statement
statement
…
.ends

1. Subcircuit Scoping Rules

A .subckt or .model definition shall occur in the subcircuit in which the subcircuit or
model is referenced, or in a calling subcircuit at any level above.

35

11. Subcircuit Definition Ending Statements
Subcircuit definitions shall end with the .ends token. See Subcircuit Definitions
above for syntax and examples.

36

12. Elements
The sections below describe the individual circuit elements that may appear in an

IBIS-ISS file.

1. Subcircuits

Reusable cells are the key to saving labor in any CAD system. To create and
simulate a reusable circuit, construct it as a subcircuit.Use parameters to expand the
utility of a subcircuit.

X<subcircuit_name> creates an instance of a subcircuit. . The subcircuit shall
have already been defined elsewhere in the IBIS-ISS file using a .SUBCKT
statement.

Syntax
Xxxxx n1 [n2 n3 …] subnam
[parnam = val] [M = val]

Argument Definition

X<subcircuit_name> Subcircuit element name. Shall begin with an X,
followed by up to 15 alphanumeric characters.

n1 … Node names for external reference.

subnam Subcircuit model reference name.

Parnam

M

A parameter name set to a value (val) for use only in
the subcircuit. It overrides a parameter value in the
subcircuit definition, but is overridden by a value set in
a .PARAM statement.

Multiplier

2. Linear Resistor
A linear resistor is a basic electrical circuit element for impeding current flow.

37

Syntax

Rxxx node1 node2 [R =] value

The value of a linear resistor may be a constant, or an expression of
parameters.

Token Description

Rxxx Name of a resistor

node1 and node2 Names or numbers of the connecting nodes

value resistance value, in ohms

3. Linear Capacitor
A linear capacitor is a basic electrical circuit element for charge storage.

Syntax

Cxxx node1 node2 [C=]value

The value of a linear capacitor may be a constant, or an expression of
parameters.

Token Description

Cxxx Name of a capacitor. Shall begin with C, followed by up to 1023
alphanumeric characters.

node1,node2 Names of connecting nodes.

value Capacitance value, in farads.

4. Voltage Shunt
A voltage shunt creates a short between two nodes.

38

Syntax

Vxxx node1 node2 [DC=]0

Token Description

Vxxx Voltage shunt element name. Shall begin with K, followed by up
to 1023 alphanumeric characters.

node1, node 2 Nodes between which the shunt is placed.

DC=0 The zero value is required and sets the voltage between the
nodes at zero volts. The text “DC=” is optional.

5. Mutual Inductor
A mutual inductor describes inductive coupling between two defined inductors.

Syntax

Kxxx Lyyy Lzzz [K=]coupling

Token Description

Kxxx Mutual inductor element name. Shall begin with K, followed by
up to 1023 alphanumeric characters.

Lyyy Name of the first of two coupled inductors. This inductor shall
be defined elsewhere in the file.

Lzzz Name of the second of two coupled inductors. This inductor
shall be defined elsewhere in the file.

coupling Coefficient of mutual coupling. This is a unitless number, with
magnitude > 0. If the coupling coefficient is negative, the
direction of coupling reverses. This is equivalent to reversing
the polarity of either of the coupled inductors. Use the K=xxx
syntax when defining the coupling coefficient using a parameter
name or an equation. The pre-defined parameter “k” may be

39

omitted.

6. Linear Inductor

Syntax

Lxxx node1 node2 [L =] inductance

Token Description

Lxxx Name of an inductor.

node1,node2 Names or numbers of the connecting nodes.

inductance inductance value, in henries.

7. T-element (Ideal Transmission Line)

Syntax

Txxx in refin out refout Z0=val TD=val [L=val]

+ [IC=v1, i1, v2, i2]

Token Description

Txxx Lossless transmission line element name. Shall begin with T,
followed by up to 1023 alphanumeric characters.

In Signal input node.

40

Refin Ground reference for the input signal.

Out Signal output node.

Refout Ground reference for the output signal.

Z0 Characteristic impedance of the transmission line (Ohms).

TD Propagation time delay of the transmission line (in seconds). If
physical length (L) is specified, then units for TD are considered in
seconds per meter.

L Physical length of the transmission line, in units of meters.
Default=1.

41

8. W-element (Coupled Transmission Line)

This section describes how to use basic transmission line simulation equations
and an optional method for computing the parameters of transmission line
equations.

The W-element is a versatile transmission line model that may be used to
describe a variety of transmission line structures, from a simple lossless line to
complex frequency-dependent lossy-coupled lines.

Syntax
Wxxx i1 i2 ... iN iR o1 o2 ... oN oR N=val L=val
+ [RLGCMODEL=name | TABLEMODEL=name]

Token Description

N Number of signal conductors (excluding the reference conductor).

i1...iN Node names for the near-end signal-conductor terminal

iR Node name for the near-end reference-conductor terminal.

o1... oN Node names for the far-end signal-conductor terminal

oR Node name for the far-end reference-conductor terminal.

L Length of the transmission line.

RLGCMODEL Name of the RLGC model.

TABLEMODEL Name of the frequency-dependent tabular model

42

The W-element supports two formats to specify transmission line properties:

 Format 1: RLGC specification

• Internally specified in a .MODEL statement.

• Externally specified in a different file.

 Format 2: Frequency-dependent tabular specification

Parameters in the W-element element declaration may be declared in any
order. Specify the number of signal conductors, N, after the list of nodes. The
nodes and parameters in the W-element element declaration may be
interspersed.

Format 1: RLGC Model

The inputs of the W-element are given in per unit length matrices: Ro (DC
resistance), L, G, C, Rs (skin effect), and Gd (dielectric loss)

The W-element does not limit any of the following parameters:

 Number of coupled conductors.

 Shape of the matrices.

 Line loss.

 Length or amount of frequency dependence.

The RLGC text file contains frequency-dependent RLGC matrices per unit
length. The W-element also handles frequency-independent RLGC, and
lossless (LC) lines. It does not support RC lines.

Because RLGC matrices are symmetrical, the RLGC model specifies only the
lower triangular parts of the matrices. The syntax of the RLGC model for the
W-element is:

.MODEL name W MODELTYPE=RLGC N=val
+ Lo=matrix_entries
+ Co=matrix_entries [Ro=matrix_entries Go=matrix_entries]
+ Rs=matrix_entries wp=val Gd=matrix_entries Rognd=val
+ Rsgnd=val Lgnd=val

Token Description

N Number of conductors (same as in the element card).

43

L

DC inductance matrix, per unit length .

C

DC capacitance matrix, per unit length .

Ro

DC resistance matrix, per unit length .

Go

DC shunt conductance matrix, per unit length .

Rs

Skin effect resistance matrix, per unit length .

Gd

Dielectric loss conductance matrix, per unit length .

wp Angular frequency of the polarization constant [radian/sec] (see
Introduction to the Complex Dielectric Loss Model). When the wp
value is specified, the unit of Gd becomes [S/m].

Lgnd

DC inductance value, per unit length for grounds (reference line).

Rognd

DC resistance value, per unit length for ground .

Rsgnd

Skin effect resistance value, per unit length for ground .

The following input netlist file shows RLGC input for the W-element:

* W-Element example, four-conductor line

H
m

F
m

m

S
m

m Hz

S
m Hz

H
m

m

m Hz

44

W1 N=3 1 3 5 0 2 4 6 0 RLGCMODEL=example_rlc l=0.97

* RLGC matrices for a four-conductor lossy
.MODEL example_rlc W MODELTYPE=RLGC N=3
+ Lo=
+ 2.311e-6
+ 4.14e-7 2.988e-6
+ 8.42e-8 5.27e-7 2.813e-6
+ Co=
+ 2.392e-11
+ -5.41e-12 2.123e-11
+ -1.08e-12 -5.72e-12 2.447e-11
+ Ro=
+ 42.5
+ 0 41.0 + 0 0 33.5
+ Go= + 0.000609
+ -0.0001419 0.000599
+ -0.00002323 -0.00009 0.000502
+ Rs=
+ 0.00135
+ 0 0.001303
+ 0 0 0.001064
+ Gd=
+ 5.242e-13
+ -1.221e-13 5.164e-13
+ -1.999e-14 -7.747e-14 4.321e-13

Using RLGC Matrices

RLGC matrices in the RLGC model of the W-element are in the Maxwellian
format

Format 2: Frequency-Dependent Tabular Specification

The tabular RLGC model may be used as an extension of the analytical RLGC
model to model any arbitrary frequency-dependent behavior of transmission
lines (this model does not support RC lines).

The W-element syntax supports tables of data (use a .MODEL statement of
type w). To accomplish this, the .MODEL statement refers to .MODEL
statements where the “type” is SP (described in Small-Signal Parameter Data
Frequency Table Model (SP Model)), which contain the actual table data for
the RLGC matrices.

Note:

To ensure accuracy, the W-element tabular model requires the following:

45

 R and G tables require zero frequency points.

 L and C tables require infinity frequency points as well as zero frequency
points.

To specify a zero frequency point, the pre-defined DC parameter may be
used. Alternatively, the f parameter in the DATA field of the SP model may be
set to a value of 0. To specify an infinity frequency point, use the INFINITY
token.

See also, Small-Signal Parameter Data Frequency Table Model (SP Model).

Introduction to the Complex Dielectric Loss Model

When the INCLUDEGDIMAG token = yes and there is no wp input, the
W-element regards the Gd matrix as the conventional model and then automatically
extracts constants for the complex dielectric model.

In conventional use, the HSPICE W-element RLGC model, frequency-dependent
conductance is approximated as Eq. 36.

Where, Eq. 36 represents the increase of shunt conductance due to dielectric loss.
These pure real non-constant functions of frequency violate causality [1]. As system
operating frequency becomes significantly high even for PCB systems which use high
polymer dielectric materials like FR4, the appearance of the dielectric loss becomes
significant and significant non-causality of Eq. 36 appears.

Frequency-Dependent Matrices
The frequency-dependent loss of the shunt conductance in the dielectric is mainly due
to dielectric polarization. This polarization loss leads to a complex permittivity [xxx] for
the dielectric material[2].

Equation 37

And loss tangent of the dielectric material can be specified as the ratio of imaginary part
of to the real part,

Equation 38

For a single dielectric dipolar moment, complex electric permittivity can be written as,

Equation 39

Where, and are low and high frequency limits of dielectric permittivity
which are real numbers. And is the angular frequency that corresponds to the
polarization time constant of the dielectric material. From Eq. 39, frequency-dependent
complex shunt loss conductance can be expressed as [3],

46

Equation 40

Where, the imaginary part of the conductance contributes reactively. In cases of
multiple dielectric materials surrounding the system, the complex loss conductance can
be extended as linear combinations of multiple dipole moments as,

Equation 41

Since Eq. 41 satisfies the Kramers-Kronig condition, we can ensure the
passivity/causality of the system. Note that when this new model is activated, the
definition of Gd changes from conventional [S/m*Hz] to [S/m].

Small-Signal Parameter Data Frequency Table Model (SP Model)

The small-signal parameter data frequency table model (SP model) is a generic model
that describes frequency-varying behavior.

Syntax

.MODEL name sp [N=val FSTART=val FSTOP=val NI=val
+ SPACING=val MATRIX=val VALTYPE=val INFINITY=matrixval
+ INTERPOLATION=val EXTRAPOLATION=val] [DATA=(npts ...)]
+ [DATAFILE=filename]

Parameter Description

Token Description

N Matrix dimension (number of signal terminals). Default is 1. If you
use a value other than the default, you must specify that value
before you set INFINITY and DATA

FSTART Starting frequency point for data. Default=0.

FSTOP Final frequency point for data. Use this parameter only for the
LINEAR and LOG spacing formats.

NI Number of frequency points per interval. Use this parameter only for
the DEC and OCT spacing formats. Default=10.

47

SPACING Data sample spacing format:
 LIN (LINEAR): uniform spacing with frequency step of

(FSTOP-FSTART)/(npts-1). The default.
 OCT: octave variation with FSTART as the starting frequency

and NI points per octave. npts sets the final frequency.
 DEC: decade variation with FSTART as the starting frequency

and NI points per decade. npts sets the final frequency.
 LOG: logarithmic spacing. FSTART and FSTOP are the

starting and final frequencies.
 POI: non-uniform spacing. Pairs data (NONUNIFORM) points

with frequency points.

MATRIX Matrix (data point) format:
 SYMMETRIC: symmetric matrix. Specifies only lower-half

triangle of a matrix (default).
 HERMITIAN: similar to SYMMETRIC; off-diagonal terms are

complex conjugates of each other.
 NONSYMMETRIC: non-symmetric (full) matrix.

VALTYPE Data type of matrix elements:
 REAL: real entry.
 CARTESIAN: complex number in real/imaginary format

(default).
 POLAR: complex number in polar format. Specify angles in

radians.

INFINITY Data point at infinity. Typically real-valued. This data format must be
consistent with MATRIX and VALTYPE specifications. Npts does not
count this point.

INTERPOLA
TION

Interpolation scheme:
 STEP: piecewise step (default).
 LINEAR: piecewise linear.
 SPLINE: b-spline curve fit.

EXTRAPOL
ATION

Extrapolation scheme during simulation:
 NONE: no extrapolation is allowed. Simulation terminates if a

required data point is outside of the specified range.
 STEP: uses the last boundary point. The default.
 LINEAR: linear extrapolation by using the last two boundary

points.

48

If the data point at infinity is specified, then extrapolation is not used.

npts Number of data points.

DC Data port at DC. Normally real-valued. This data format must be
consistent with MATRIX and VALTYPE specifications. npts does not
count this point. You must specify either the DC point or the data
point at frequency=0.

DATA Data points.
 Syntax for LIN spacing:

.MODEL name sp SPACING=LIN [N=dim] FSTART=f0
+ DF=f1 DATA=npts d1 d2 ...

 Syntax for OCT or DEC spacing:
.MODEL name sp SPACING=DEC or OCT [N=dim]
+ FSTART=f0 NI=n_per_intval DATA=npts d1 d2 ...

 Syntax for POI spacing:
.MODEL name sp SPACING=NONUNIFORM [N=dim]
+ DATA=npts f1 d1 f2 d2 ...

DATAFILE Data points in an external file. This file must contain only raw
numbers without any suffixes, comments or continuation letters.
The first number in the file must be an integer value to indicate the
number of sampling points in the file. Then, sampling data must
follow. The order of sampling data must be the same as in the DATA
statement. This data file has no limitation on line length.

W-element Model Definition Syntax

.MODEL name W MODELTYPE=TABLE [FITGC=0|1] N=val
+ LMODEL=l_freq_model CMODEL=c_freq_model
+ [RMODEL=r_freq_model GMODEL=g_freq_model]

Token Description

FITCG Pre-defined parameter token for the W-element with
MODELTYPE=TABLE. A value of 1 instructs the tool to run a
causality check on the data. A value of 0 turns any causality checking
off (default)

49

N Number of signal conductors (excluding the reference conductor).

LMODEL SP model name for the inductance matrix array.

CMODEL SP model name for the capacitance matrix array.

RLMODEL SP model name for the resistance matrix array. By default, it is zero.

GMODEL SP model name for the conductance matrix array. By default, it is
zero.

50

9. S-element
An S-element is a frequency-domain set of network data, described using
scattering parameters.

Syntax
Sxxx nd1 nd2 ... ndN [ndRef]

+ MNAME=Smodel_name

+ [FBASE = base_frequency] [FMAX=maximum_frequency]

Token Description

nd1 nd2...ndN Nodes of an S-element Three kinds of definitions are present:

 With no reference node ndRef, the default reference node is
GND. Each node ndi (i=1~N) and GND construct one of the N
ports of the S-element.

 With one reference node, ndRef is defined. Each node ndi
(i=1~N) and the ndRef construct one of the N ports of the
S-element.

 With an N reference node, each port has its own reference
node. The node definition may be written more clearly:
nd1+ nd1- nd2+ nd2- ... ndN+ ndN-
Each pair of the nodes (ndi+ and ndi-, i=1~N) constructs one
of the N ports of the S-element.

ndRef Reference node

MNAME Name of the S model; Note that string parameters are supported
in calling an MNAME.

51

FBASE Base frequency to use for transient analysis. This value becomes
the base frequency point for Inverse Fast Fourier Transformation
(IFFT).

 If this value is not set, the base frequency is a reciprocal value
of the transient period.

 If a frequency is set that is smaller than the reciprocal value of
the transient, then transient analysis performs circular
convolution, and uses the reciprocal value of FBASE as its
base period.

FMAX Maximum frequency use in transient analysis. Used as the
maximum frequency point for Inverse Fast Fourier
Transformation (IFFT).

The nodes of the S-element be placed immediately after the identifier token.
All optional parameters in both the
S-element and S model statements may be defined by the user, except for
MNAME argument.

The optional arguments may be entered in any order, and the parameters
specified in the element statement have a higher priority.

Figure 27 Terminal Node Notation

Node Example

The following example illustrates the nd1 nd2...ndN—no reference, single
reference, and multi-reference parameters.

N+1 terminal system

nd1

[i]1
[vinc]1

[vref]1

(+) [v]1

.

.

.

ndN

[i]N

[vinc]N

[vref]N

(+) [v]N

(-) ndR

(reference node)

.

.

.

...

52

**S-parameter example

* no reference
S_no_ref n1 n2 mname=s_model

* single reference
S_one_ref n1 n3 gnd mname=s_model

*multi-reference
S_multi_ref n1 gnd n4 gnd mname=s_model

The S-element must have a call to one of the supported S-parameter file
formats (IBIS-ISS gets the number of ports from the S-parameter file The
number of ports, ‘n’, may be specified explicitly as N=n.

 For n terminals, the S-element assumes no reference node.

 For n+1 terminals, the S-element assumes one reference node.

 For 2n terminals, the S-element assumes signal nodes and n reference
nodes. Each pair of nodes is a signal and a reference node.

S Model Syntax

Use the following syntax to describe specific S models:

.MODEL Smodel_name S [N=dimension]
+ [TSTONEFILE=filename

+ [FBASE=base_frequency] [FMAX=maximum_frequency]

Token Description

Smodel_name Name of the S model.

S Specifies that the model type is an S model.

N S model dimension, which is equal to the terminal number of an
S-element and excludes the reference node.

53

TSTONEFILE Specifies the name of a Touchstone file. Data contains frequency-
dependent array of matrixes. Touchstone files must follow the .s#p file
extension rule, where # represents the dimension of the network.
Note that string parameters are supported for TSTONEFILE
Example:

.subckt sparam n1 n2 tsfile=str('ss_ts.s2p')
S1 n1 n2 0 mname=s_model
.model s_model S TSTONEFILE=str(tsfile)
.ends
x1 A B sparam tsfile=str('ss_ts.s2p')
…

For details, see Touchstone® File Format Specification by the IBIS
Open Forum (http://www.eda.org/ibis/).

FBASE Base frequency used for transient analysis. IBIS-ISS uses this value as
the base frequency point for Fast Inverse Fourier Transformation
(IFFT).

 If FBASE is not set, IBIS-ISS uses a reciprocal of the transient
period as the base frequency.

 If FBASE is set smaller than the reciprocal value of transient period,
transient analysis performs circular convolution by using the
reciprocal value of FBASE as a base period.

FMAX Maximum frequency for transient analysis. Used as the maximum
frequency point for Inverse Fast Fourier Transform (IFFT).

The, TSTONEFILE parameters describe the frequency-varying behavior of a
network.

54

10. E-element (Voltage-Controlled Voltage Source)
This section explains the E-element syntax and parameters.

Linear

Exxx n+ n- [VCVS] in+ in- gain

For a description of these parameters, see table VCVS Parameters.

Laplace Transform

Voltage Gain H(s):

Exxx n+ n- LAPLACE in+ in- k0, k1, ..., kn / d0,
d1, ..., dm

For a description of these parameters, see table VCVS Parameters.

H(s) is a rational function, with parameters used to define the values of all
coefficients (k0, k1, ..., d0, d1, ...).

Pole-Zero Function

Voltage Gain H(s):

Exxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm

For a description of these parameters, see table VCVS Parameters.

The following equation defines H(s) in terms of poles and zeros:

The complex poles or zeros are in conjugate pairs. The element description
specifies only one of them, and the program includes the conjugate.
Parameters may be used to specify the a, b, , and f values.

Example

Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

The Elow_pass statement describes a low-pass filter, with the transfer
function:

H s
a s z1 j2fz1–+ s zn j2fzn–+ s zn j2fzn+ +

b s p1 j2fp1–+ s pm j2fpm–+ s pm j2fpm+ +
---=

55

Foster Pole-Residue Form

Gain E(s) form

Exxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

For a description of these parameters, see Common Source Parameters.

In the above syntax, parentheses, commas, and slashes are separators—they
have the same meaning as a space. A pole-residue pair is represented by four
numbers (real and imaginary part of the residue, then real and imaginary part
of the pole).

For convergence, the Re[pi] must be less than zero. For an N-port
admittance matrix Y, Re{Y} should be positive-definite to ensure passivity of
the model.

Note:

For real poles, half the residue value is entered because it is applied twice. In
the above example, the first pole-residue pair is real, but is written as “A1/(s-
p1)+A1/(s-p1)”; therefore, 0.0004 is entered rather than 0.0008.

H s 1.0
1.0 s 1+ s 0.5 j2 0.1379+ + s 0.5 j2 0.1379 –+
--=

56

E-element Parameters

The E-element parameters are described in the following list.

Token Description

Exxx Voltage-controlled element name. Must begin with E, followed
by up to 1023 alphanumeric characters.

gain Voltage gain.

in +/- Positive or negative controlling nodes. Specify one pair for each
dimension.

K Ideal transformer turn ratio: or,
number of gates input.

n+/- Positive or negative node of a controlled element.

VCVS Pre-defined token for a voltage-controlled voltage source. VCVS
is a reserved word; do not use it as a node name.

V(in+,in-) k V(n+,n-)=

57

11. F-element (Current-Controlled Current Source)
This section explains the F-element syntax and parameters.

Note:

G-elements with algebraic expressions may be used to duplicate the
functions of an F-element.

Syntax

Fxxx n+ n- [CCCS] vn1 gain

F-element Parameters

The F-element parameters are described in the following list.

Token Description

CCCS Pre-defined token for current-controlled current source. CCCS is a
IBIS-ISS reserved word; do not use it as a node name.

Fxxx Element name of the current-controlled current source. Must begin
with F, followed by up to 1023 alphanumeric characters.

gain Current gain.

n+/- Connecting nodes for a positive or negative controlled source.

vn1 … Names of voltage sources, through which the controlling current
flows. Specify one name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in
increasing order.

y1,... Corresponding output current values of x.

58

12. G-element (Voltage-Controlled Current Source)
This section explains G-element syntax statements, and their parameters.

Linear

Gxxx n+ n- [VCCS] in+ in- transconductance

For a description of the G-element parameters, see Table VCCS Parameters.

Laplace Transform

Transconductance H(s):

Gxxx n+ n- LAPLACE in+ in- k0, k1, ..., kn / d0,
d1, ..., dm

H(s) is a rational function, in the following form:

Parameters may be used to define the values of all coefficients (k0, k1, ..., d0,
d1, ...).

Pole-Zero Function

Transconductance H(s):

Gxxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm

The following equation defines H(s) in terms of poles and zeros:

The complex poles or zeros are in conjugate pairs. The element description
specifies only one of them, and the simulation program will include the
conjugate automatically. Parameters may be used to specify the a, b, , and f
values.

For a description of the G-element parameters, see Common Source
Parameters.

Example
Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0 / 1.0 0.001,0.0

H s
k0 k1s knsn+ + +

d0 d1s dmsm+ + +
---=

H s
a s z1 j2fz1–+ s zn j2fzn–+ s zn j2fzn+ +

b s p1 j2fp1–+ s pm j2fpm–+ s pm j2fpm+ +
---=

59

The Ghigh_pass statement describes a high-pass filter, with the transfer
function:

Foster Pole-Residue Form

Transconductance G(s) form

Gxxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

In the above syntax, parenthesis , commas, and slashes are separators—they
have the same meaning as a space. A pole-residue pair is represented by four
numbers (real and imaginary part of the residue, then real and imaginary part
of the pole).

For convergence, the Re[pi] shall be less than zero. For an N-port admittance
matrix Y, Re{Y} should be positive-definite to ensure passivity of the model.

For a description of the G-element parameters, see Common Source
Parameters.

Example

To represent a G(s) in the form,

The IBIS-ISS syntax is:

G1 1 0 FOSTER 2 0 0.001 1e-12
+(0.0004, 0)/(-1e10, 0) (0.001, -0.006)/(-1e8, 1.8e10)

Note:

For real poles, half the residue value is entered because it is applied
twice. In the above example, the first pole-residue pair is real, but is

H s 1.0 s 0.0 j 0.0+ +
1.0 s 0.001 j 0.0+ +
---=

G s 0.001 1 10
12–

s 0.0008

s 1 10
10+

---------------------------- 0.001 j0.006–

s 1 10
8

j1.8 10
10+– –

0.001 j0.006+

s 1 10
8

j1.8 10
10–– –

--

+ + ++=

60

written as “A1/(s-p1)+A1/(s-p1)”; therefore, 0.0004 is entered rather than
0.0008.

61

G-element Parameters

The G-element parameters are described in the following list.

Token Description

Gxxx Name of the voltage-controlled element. Must begin with G,
followed by up to 1023 alphanumeric characters.

in +/- Positive or negative controlling nodes. Specify one pair for each
dimension.

n+/- Positive or negative node of the controlled element.

transconductance Voltage-to-current conversion factor.

VCCS Pre-defined token for the voltage-controlled current source.
VCCS is a reserved IBIS-ISS word; do not use it as a node name.

x1,... Controlling voltage, across the in+ and in- nodes. Specify the
x values in increasing order.

y1,... Corresponding element values of x.

13. H-element (Current-Controlled Voltage Source)
This section explains H-element syntax statements, and defines their
parameters.

Note:

The E-element with algebraic expressions may be used to duplicate the
function of the H-element.

Syntax

Hxxx n+ n- [CCVS] vn1 transresistance

62

Token Description

CCVS Pre-defined token for the current-controlled voltage source. CCVS
is a IBIS-ISS reserved word; do not use it as a node name.

Hxxx Element name of current-controlled voltage source. Must start
with H, followed by up to 1023 alphanumeric characters.

n+/- Connecting nodes for positive or negative controlled source.

transresistance Current-to-voltage conversion factor.

vn1 … Names of voltage sources, through which controlling current
flows. One name for each dimension shall be specified.

x1,... Controlling current, through the vn1 source. Specify the x values
in increasing order.

y1,... Corresponding output voltage values of x.

14. Common Source Parameters
Input parameters common to all sources are shown in the following list.

Token Description

ABS Output is an absolute value if ABS=1.

DELAY Pre-defined token for the delay element, corresponding to
propagation delay of the source. DELAY is a reserved word,
which shall not be used as a node name.

63

DELTA Controls the curvature of the piecewise linear corners. This
parameter defaults to one-fourth of the smallest distance between
breakpoints. The maximum is one-half of the smallest distance
between breakpoints.

Exxx Voltage-controlled element name. Must begin with E, followed by
up to 1023 alphanumeric characters.

gain Voltage gain.

gatetype(k) Can be AND, NAND, OR, or NOR. k represents the number of
inputs of the gate. x and y represent the piecewise linear variation
of output, as a function of input. In multi-input gates, only one
input determines the state of the output.

IC Initial condition: initial estimate of controlling voltage value(s). If
IC is not specified, the default=0.0.

in +/- Positive or negative controlling nodes. Specify one pair for
eachdimension.

k Ideal transformer turn ratio: V(in+,in-) = k V(n+,n-)
or number of gates input.

MAX Maximum output voltage value. The default is undefined, and sets
no maximum value.

MIN Minimum output voltage value. The default is undefined, and sets
no minimum value.

n+/- Positive or negative node of a controlled element.

NDIM Number of polynomial dimensions. If POLY(NDIM) is not set,
a one-dimensional polynomial shall be assumed.
NDIM must be a positive number.

64

NPDELAY Sets the number of data points to use in delay simulations. The
default value is the larger of either 10, or the smaller of TD/tstep
and tstop/tstep. That is,

 min(TD,tstop)
NPDELAYdefault= max(---10)
 tstep

The .TRAN statement specifies tstep and tstop values.

LEVEL=x Interchangeable function token such as VCCS, VCAP, etc.

OPAMP
or Level=1

or Level=1

P0, P1 … The polynomial coefficients.

If only one coefficient is specified, the simulation engine shall
assume it to be P1 (P0=0.0), and that the element is linear.
If more than one polynomial coefficient is specified, the element
shall be assumed nonlinear, and P0, P1, P2 ... shall be assumed
to represent them.

POLY Token for the polynomial function. If POLY(ndim) is not
specified, the engine shall assume a one-dimensional polynomial.
ndim must be a positive number.

PWL Token for the piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients.
Temperature changes update the SCALE:

SCALEeff = SCALE 1 + TC1 t + TC2 t2

TD Token for the time (propagation) delay.

65

66

13. Best Practices

This section details syntax recommendations for ensuring maximum compatibility with
existing proprietary SPICE variants. While not requirements for IBIS-ISS, following
these practices will help maintain the portability of IBIS-ISS files.

 Scaling of interconnect subcircuits may give different results between different
simulators and should be avoided.

 Global parameters may give different results between different simulators and

should be avoided.

 Exponent range should be limited to between e-60 and e+60.

 For maximum compatibility, IBIS-ISS does not support the “X” (Meg) scale
factor..

 A name field should begin with [a-z] or [A-Z]. The remaining characters of a

name field should be limited to
o [a-z], [A-Z], [0-9], ~!@#%&_<>?[]|:;

 Parameter names should begin with [a-z] or [A-Z], and the remaining characters

should be limited to
o [a-z] or [A-Z], [0-9], ! # $ % []

 While a parameter may be defined in more than one .param statement within a

subckt, this practice is best avoided.

 Node names should either be all numeric [0-9], or be a name nield.

