IBIS-AMI DLL/SO File Checking
[bookmark: _GoBack]16 Feb 2016
Currently the only check for IBIS-AMI DLL/SO files is E4616 “Code file %s not found. It was defined in [Algorithmic Model] for Model %s”. The following checks will be added:
DLL/SO Machine Architecture
The DLL/SO file must be suitable for the machine architecture and address bit width designated by first argument of the Executable subparameter. It is acceptable to check only those files of the machine architecture and address bit width of the currently running IBISCHK6 or later executable. It should be possible to accomplish this check by loading the file and reading its symbol table.
An ERROR message must be given where a DLL/SO file not matching the stated machine architecture or the stated bit width is referenced. Example: “Code file %s is not loadable as a %d bit %s object” (filename, bits, OS).
DLL/SO Function Existence
Each DLL/SO file must contain code symbols for exported functions in one of four possible combinations:
A. Case 1: Executable model file has AMI_Init, AMI_GetWave and AMI_Close. (IBIS 5.0 and above)
B. Case 2: Executable model file has AMI_Init and AMI_Close. (IBIS 5.0 and above)
C. Case 3: Executable model file has AMI_Resolve, AMI_Resolve_Close, AMI_Init, AMI_GetWave and AMI_Close. (IBIS 6.0 and above)
D. Case 4: Executable model file has AMI_Resolve, AMI_Resolve_Close, AMI_Init and AMI_Close. (IBIS 6.0 and above)
These cases can be checked according to the following rules, which require parsing the AMI file associated with each DLL/SO file:
1. DLL/SO file must export AMI_Init() and AMI_Close() functions in symbol table. Example ERROR messages:
“Code file %s does not contain required AMI_Init() function”
“Code file %s does not contain required AMI_Close() function”
2. If the corresponding AMI file contains GetWave_Exists=True, DLL/SO file must export AMI_GetWave() function in symbol table. Example ERROR message:
“Code file %s does not contain AMI_GetWave() function, required because GetWave_Exists=True in AMI file %s”
3. If corresponding AMI file contains Resolve_Exists=True, DLL/SO file must export the AMI_Resolve() and AMI_Resolve_Close() functions in its symbol table. Example ERROR messages:
“Code file %s does not contain AMI_Resolve() function, required because Resolve_Exists=True in AMI file %s”
“Code file %s does not contain AMI_Resolve() function, required because Resolve_Exists=True in AMI file %s”
Failure to conform to any of the above must result in an ERROR message. It is acceptable to check only those files of the machine architecture and address bit width of the currently running IBISCHK6 executable. It will be necessary to examine the AMI files associated with all IBIS file Executable, Executable_TX, and Executable_RX lines within an [Algorithmic Model] section to find the AMI file(s) associated with each DLL/SO and determine the status of GetWave_Exists and Resolve_Exists.
Checks for the presence of exported code symbols can be implemented simply by using the same code used by EDA tools to find symbols in the DLL/SO files. For example, dlopen() and dlsym() on Linux, and LoadLibrary() and GetProcAddress() on Windows.
A Linux example code fragment:
#include <dlfcn.h>
…
 char *msg = dlerror(); // To reset.
 void *dll = dlopen(file_name, RTLD_NOW);
 msg = dlerror();
 void *func = dlsym(dll, func_name);
 msg = dlerror();
A Windows example code fragment:
#include <windows.h>
…
 void *dll = LoadLibrary (file_name);
 void *func = GetProcAddress((HMODULE)dll, func_name);
Function Call Testing
Once loading of the DLL/SO files has been accomplished the next step is to give each one a quick test. The test sequence is as follows:
1. AMI_Init is called with test data:
long AMI_Init (
double *impulse_matrix, 	hard-coded array of values
long number_of_rows,		calculated for 4 UI
long aggressors, 			1 aggressor or Max_Aggressors
double sample_interval, 	calculated for 32 and 128 samples/bit
double bit_time, 			calculated for 6.25Gbps
char *AMI_parameters_in, 	String created from AMI parameters
char **AMI_parameters_out, 	Pointer to pointer, will be set by DLL
void **AMI_memory_handle,	Pointer to pointer, will be set by DLL
char **msg				Pointer to pointer, will be set by DLL
)
	The IBIS Open Forum will provide data for impulse_matrix. The number_of_rows
Platform Information
For IBIS files containing one or more [Algorithmic Model] keywords, some means must be provided to summarize Executable subparameter DLL/SO files and their compatibility with the running IBISCHK6 O/S and/or bit width. This can be reported at the end of execution, and does not need to list the handling of each unique DLL/SO file. This will also serve to report the platform sets supported by the models. For example:
NOTE: Status of [Algorithmic Model] Executables for Windows 64:
 ventura_tx_32.dll Windows 32: NOT CHECKED
 ventura_tx_64.dll Windows 64: 0 ERRORS, 0 WARNINGS
 ventura_tx_32.so Linux 32: NOT CHECKED
 ventura_tx_64.so Linux 64: NOT CHECKED
NOTE: This IBISCHK6 executable supports Windows 64 bit only.

The above is a sample report for IBISCHK6 running on Windows 64. The unique set of DLL/SO files found in the IBIS file are listed once each, there is no need to print this list for each [Model].
