
Fitted Poles/Residues: File Format, 
Transformations, Limitations

DesignCon IBIS Summit

Santa Clara, California and Virtual

April 8, 2022

Vladimir Dmitriev-Zdorov
Siemens EDA

Email: vladimir.dmitriev-zdorov@siemens.com



Why Do We Need Approximation of Sampled Frequency-
Domain Data with Rational Functions?

• It allows efficient simulation in time domain by recursive convolution, as opposed to direct 
convolution.

• Direct convolution:

• Fast overlap-save convolution works only for unidirectional systems, but not for S/Y/Z-parameters. 

• Recursive convolution is a simple way to find y(tn+1) from known y(tn). If the impulse response of a 
linear system is exponential, g(t) = Ae-kt, then

• The step/impulse response is a sum of exponential functions if the transfer function could be 
written as partial fraction expansion, or in pole/residue form:

with M poles                             .
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Pole-Residue Representation

• The partial fractions could be converted into the ratio of two polynomials in             , 
however, the sum of rational fractions is more convenient and could be used directly for 
the purpose of time and frequency domain analysis.

• The model must be stable as it defines a linear non-autonomous system. Stable poles must 
be located on the left side of imaginary axis. This means that poles pm have negative real 
part.

• We do not allow poles with multiplicity larger than 1, such as in the term                   . The 
reason is not our inability to represent them in pole/residue form, but the fact that time 
domain response from the systems with multiple poles doesn’t allow recursive convolution. 
In practice, multiple poles could often be replaced by a set of close but distinct poles.

• For completeness, we can add reactive linear asymptotic term, which may be present in Y/Z 
parameters:
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Realness. Grouping Complex Conjugate Pairs Together

• In our practical work we expect that the time domain variables of electrical network (voltages, 

currents, scattered waves) are real functions of time. This assumes model “realness” which implies 

that all poles/residues appear in complex-conjugate pairs, and that the coefficients of the rational 

polynomials representing the dependence are real, too.

• It makes sense to “enforce” realness of the data by using the format which wouldn’t allow 

unmatching fractions with complex poles.

• Let’s take a complex conjugate pole/residue pair and convert it as follows:

With denotations:
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Grouping Complex Conjugate Pairs Together

• This form has several advantages:

• Guarantees that complex conjugate poles come in pairs

• Requires 4 real numbers to define complex conjugate pair with [m m Am1 Am2]

• Turns into a single real pole if m=0 and A2m=0

• Pole stability is enforced by having m > 0

• For convenience, we can assume m≥0, because the order of poles inside the pair is not fixed

• Coefficients Am1 , Am2 are magnitudes. Am1 defines contribution of the term Ym into DC value

• We can use the term Ym to define the value D at infinite frequency by choosing the values e.g., [1020 0  D 0]
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Multiport Models: Common Set of Poles for All Matrix 
Components or Individual Poles for Each?

• The choice is not simple, as it depends on different circumstances. If the object we simulate 

is a lumped circuit, it allows state-space representation and can be defined by a common 

set of poles. If it has large electrical length (long cable, traces, etc.) it may not have 

accurate state-space representation and may require individual pole selection for each 

matrix component, possibly with delay.

• With common poles we have more choices in passivity enforcement methods, and some 

post-fit transformations, but with individual sets of poles – better chance to get more 

accurate fit.

• The pole/residual file format must allow both cases. If we have a separate table of 

poles/residues for each matrix component, the poles could still be the same in each table, 

or this fact could be used to reduce the size of the tables (somewhat similar to [Matrix 

Format] in the Touchstone 2.0 definition).
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• We found it useful to represent some dependences as a product of the delay operator 
and the sum of pole/residue terms. For example, insertion loss dependence of the cable 
or long trace may contain several ns delay, while other components of the same model 
don’t. 

• Separating the delay                                   serves two purposes. First, we remove initial 
noise from the time domain solution, and most importantly, the remainder becomes a 
much simpler function to fit, which improves overall fit accuracy.

• Delay operator by itself is a causal function and can be represented in pole/residue form. 
However, large delay may considerably increase complexity of the fit.

• Of course, the delay extraction must be conservative, to avoid non-causality. The delay 
could be estimated e.g., by analyzing the unwrapped phase, or finding time domain 
response by IFFT.

• During passivity evaluation, we’d need to add the delay back to such components. But 
prior to residue perturbation, the required correction function must be multiplied by the 
inverse delay operator, in order to obtain necessary correction to the delay-less 
remainder.

Models with Delay
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Systems with Delay (10-inch diff pair)

By considering delay extraction we get

Better accuracy

Fewer poles

Smaller file size
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• Once the fit is found, it can be converted into a linear equivalent circuit. There are several formats 
which differ by the choice of network components. Most frequently, they use R/L/C components 
with controlled voltage and/or current sources. They can also incorporate delays, allow different 
port normalization impedance (S-parameters) or specify the term          for Y and Z types.

• The advantage of equivalent circuits written e.g., in SPICE format, is portability as it doesn’t use 
the table of the fitted pole/residues. 

• However, there are serious drawbacks. First, accuracy. Capacitors / inductors create differential 
equations which circuit simulator solves numerically by finite difference methods (implicit Euler, 
Trapezoidal, etc.). Such methods create truncation error proportional to a certain power of the 
time step. In contrast, recursive convolution doesn’t do this because it uses analytically found 
integral form of the solution. 

• Another problem is speed: a simple fit of a 4-port S-parameters will produce many additional 
equations, which should be solved simultaneously on every Newton iteration at every time step.

• The advantage of tables representing poles/residues is fast update of state variables inside the 
model instance which doesn’t add more equations than the number of model’s terminals.

• The lack of the standard on pole/residue model definition format is what prevents us from using 
it across different tools

Table of Poles/Residues or Equivalent Circuit?

𝑠𝑄
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• This format is used in Mentor / Siemens EDA for about 20 years. It is simple but proved 
sufficient for different problems/models. 

• The file header defines:

• parameter type (S, Y, Z…), # of ports, port normalization impedances

• Mixed mode order (similar to Touchstone 2.0 format) [optional]

• Frequency and value units [optional, by default assume Hz, Ohm, 1/Ohm]

• Unlike the touchstone file, the data must be ordered per component, not per frequency

• For each matrix component (k, n), k = 1…N, n = 1…N, define table of poles/residues using 4 
numbers [m m Am1 Am2] in each line, m = 1…M, where M is the number of real poles and 
complex conjugate pairs defined for the component (k, n). The number of lines M must be 
defined prior to the table. 

• If necessary, the extracted delay or the factor at linearly growing imaginary component could be 
defined.  

10
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PLS File Format Currently Supported
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Each matrix component section has its own header. It defines extracted delay (if relevant), linear 
asymptote Q for sQ dependence (for Y or Z parameters, if exists). This header doesn’t show the indices of 
the matrix component but assumes that they follow the designated order, like S11, S12, S13…. 

Examples:

35 (a) only the number of poles/residues for this component

delay: 1.26351e-09  (b) delay and the number of poles/residues
43

asymp: 0.83754e-12 (c) factor at complex frequency, for Y/Z types only
27

The number of poles/residues includes a high frequency pole that defines the value at infinity. Each 
pole/residue component has the form [m m Am1 Am2] and must be defined on a separate line:

1.60981891306855e+08   6.03830005978569e+09   -2.15363238798792e-06   1.96534688582861e-05

2.93321810887676e+09   1.91770843721616e+09   -1.05426912887832e+01  -8.82630433918342e+00

1.23990373548953e+08   4.39994357143840e+09    1.25728612812034e-05   2.13669372820529e-05

1.57193681614524e+08   3.10437931944199e+09    5.10972708034658e-05  -1.15663907003945e-05

2.83363448768380e+07   2.10218276754607e+09    3.07314704488451e-06   5.16091015967049e-06 

…

1e20          0.0             0.321123423421   0.0

• The header defines parameter type (S, Y, Z), 

and the number of model ports. 

Normalization impedances are specified on a 

separate line. Examples:

S 4

R0:  50  20  30  40

Y 4

R0:  50  50  50  50

Z 4

R0:  50  50  50  50

Note: Example files are available

Header Matrix component (i, j), i=1…N, j=1…N



• Any comments preceded by ‘!’, allowed before the header line, such as port 
mapping syntax, etc. could be defined.

• [Mixed Mode Order] keyword and the data, per Touchstone 2.0 definition

• A cleaner way to define the value at infinite frequency (we use a real pole 
at very high frequency)

• Support for the case with all common poles. This will require the keyword, 
and allow the poles being listed after the header. Then, for each matrix 
components we can specify residues and the value at infinity. Perhaps, no 
support for delay in this case. Expected file size decrease by about factor 2

• If the model is reciprocal, this could be reflected by another keyword. The 
size of the matrix can be further reduced

• No need to use different units. We can agree that pole frequencies are 
defined in [Hz], and residues in natural units: Y – Siemens, Z – Ohms, S -
dimensionless. 
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Fitted S-parameters in Time Domain Simulation
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• Compared to the sampled frequency dependent model (Touchstone file), not all 
matrix transformations are easily available that preserve accuracy and passivity of 
the fitted model.

• The simplest transformations are (a) mode conversion (between STD and MM),  
multiplication on equalization filter represented by poles/residues, port reduction 
that assumes matched termination of unused ports (R0 for S-parameters, short 
circuit for Y, open circuit for Z)

• Model type conversion (between S-Y-Z) is more complicated, and so is port 
terminations on arbitrary load.

• The complexity of transformations depends on whether the model allows stat-
space representation or not.
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Mode Conversion and Multiplication

• Conversion from standard into mixed mode (and inverse):

We only need to combine the factors at the same poles (common set of poles) or add more 
pole/residue components into fit representation

• Multiplication on a filter represented by poles/residues (e.g., channel equalizer, 
transition or noise filter, etc.) The product of the pole/residue pair with distinct 
poles can be replaced by their sum, with modified residues:

The product of the two scalar dependencies with N1 and N2 pole/residue components will 
result in (N1+N2) such components. Each component is either a single real, or a pair of 
complex-conjugate poles/residues.  
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Model Type conversion (between Y and Z)

• State-space system representation (SSR) and poles/residues. With common set of poles

we can define the system of equations:

(1)

can be converted into a transfer function which gives poles/residues:

(2)

• Conversion between Y and Z means swapping vectors Y and U. This gives:

(3)

• If model type transformation exists, the new matrices could be found from (1):

(4)

Then, the poles/residues of the new model could be defined from (2) using updated matrices (4)
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Model Type conversion (between S and Y or Z)

• There exist direct conversions between S and either Y or Z parameters.

• Let’s recall the augmented network:

• Poles/residues of YAN could be found from the fitted S-parameters

• Inverse of YAN (as explained in previous slide) gives us Z-parameters plus the diagonal 

containing port normalizing impedances. Therefore Z-parameters can be easily found.

• Then, Y-parameters can be found from Z by another inversion. However, there is a direct 

way of finding Y-parameters from S-parameters.  
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• Transformations of models given in pole/residue form are possible, but more 
complicated than similar conversions for the sampled dependencies (Touchstone data)

• Termination of ports using arbitrary conductance/impedance defined by poles, or S-
parameter matrix re-normalization is more difficult than transformations considered 
above.

• Transformations become even more complicated when matrix components are defined 
by different sets of poles. In this case, SSR requires combining all poles together which 
considerably increases the size of matrix A and the number of state variables.

• Such difficulties aggravate when working with multiport models. For example, we had to 
work with some S-parameter models with as many as 400-500 ports. 

• At some point, a reasonable solution is to re-sample the fitted model, make necessary 
conversions/transformations and then re-fit the resulted matrix dependence
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• The pole/residue format is the most convenient data representation 
for fast time-domain simulation. It also works for frequency-domain 
simulations and model extraction

• This format must be standardized to allow the use of pole/residue 
tables across different simulation and analysis tools

• In this presentation we discussed one of several possible solutions

• The goal is to collect all proposals on this topic and choose a 
sufficiently universal and convenient pole/residue file format.
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