Secrets of IBIS Sampling Virtual IBIS Summit with DesignCon 2021 August 19, 2019

Presenter: Hansel Desmond Dsilva (Achronix Semiconductor) Co-authors: Todd Bermensolo (Keysight), Adam Gregory (Samtec) and Michael Mirmak (IBIS Enthusiast)

Acknowledgement

- The authors would like to express their deep appreciation for contributions by colleagues at several EDA vendors, without whom this presentation would not have been possible.
- shared without disclosing product-specific performance that authors do not intend.

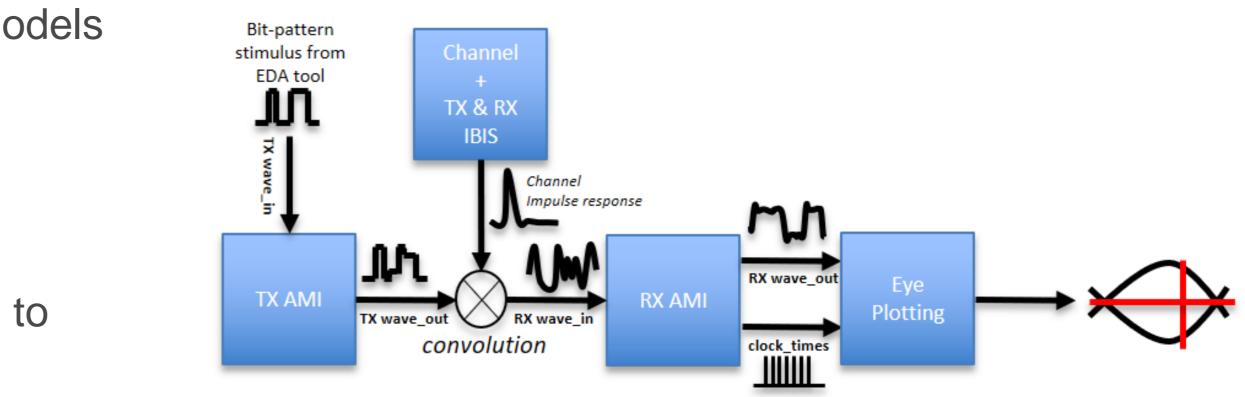
• Unfortunately, their names and those of their employers cannot be information, which would imply conclusions about product quality

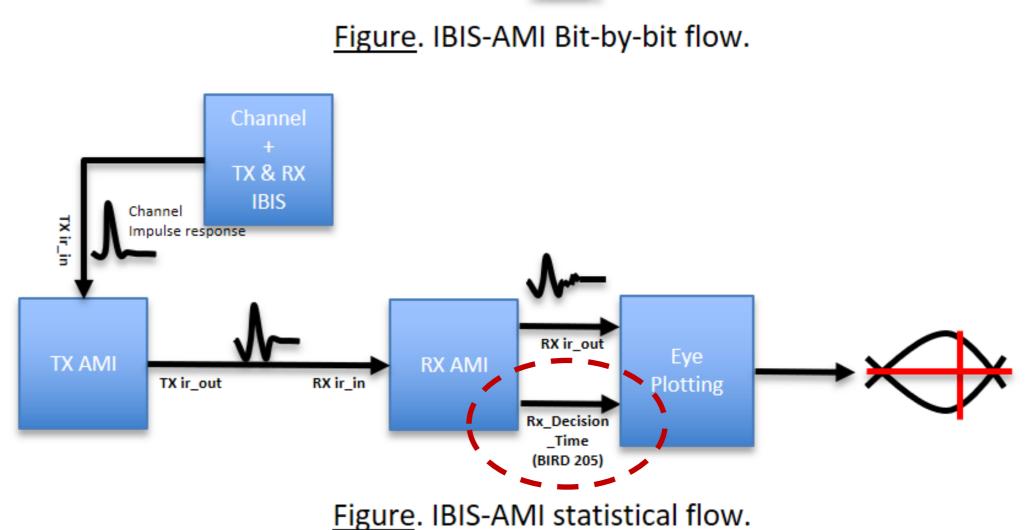
Overview. IBIS Summit at DesignCon 2020

Title

- Gap in IBIS for sampling with statistical mode AMI models
- <u>https://ibis.org/summits/jan20/bermensolo.pdf</u>

Problem statement


 In AMI_Init flow, no sampling information from model to EDA tool.


Outcome

• BIRD205. New AMI Reserved Parameter for Sampling Position in AMI_Init Flow.

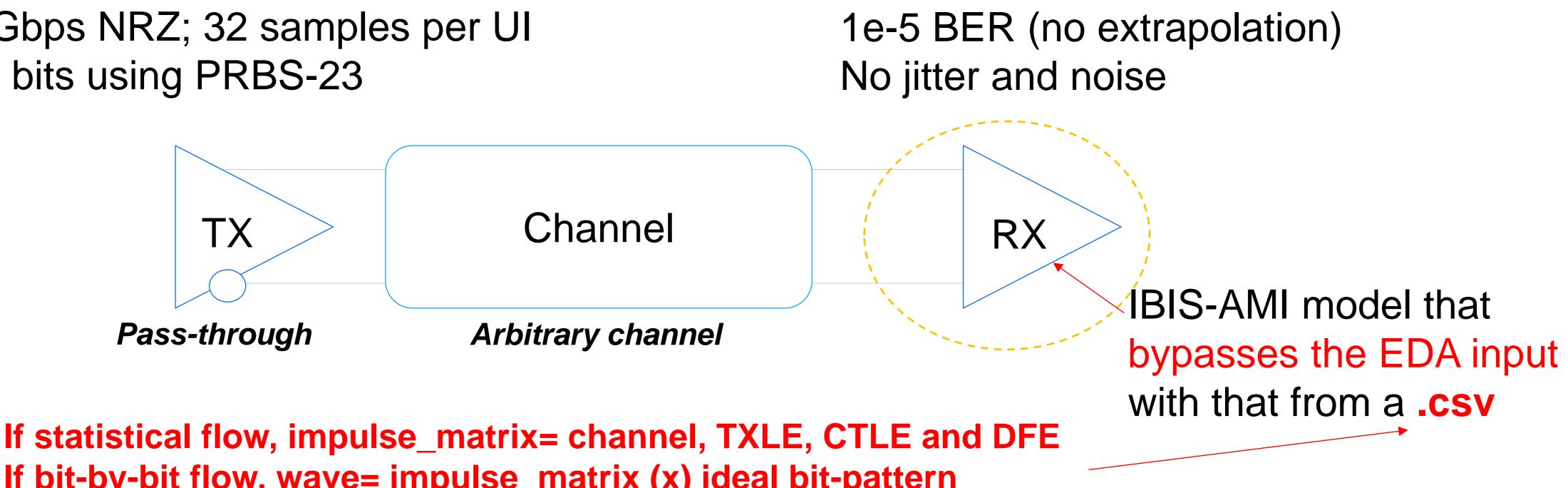
Presentation content

• Comparing six EDA tools for eye contour using the AMI_Init Flow.

Outline

- 1. Variation in eye margin across seven EDA tools Setup **Results of bit-by-bit flow Q**Results of statistical flow
- 2. Importance of sampling information in IBIS □Sampling control in the IBIS Specification **D**Experimenting with different sampling
- Key takeaway 3.

1. Variation in eye margin across different EDA tools

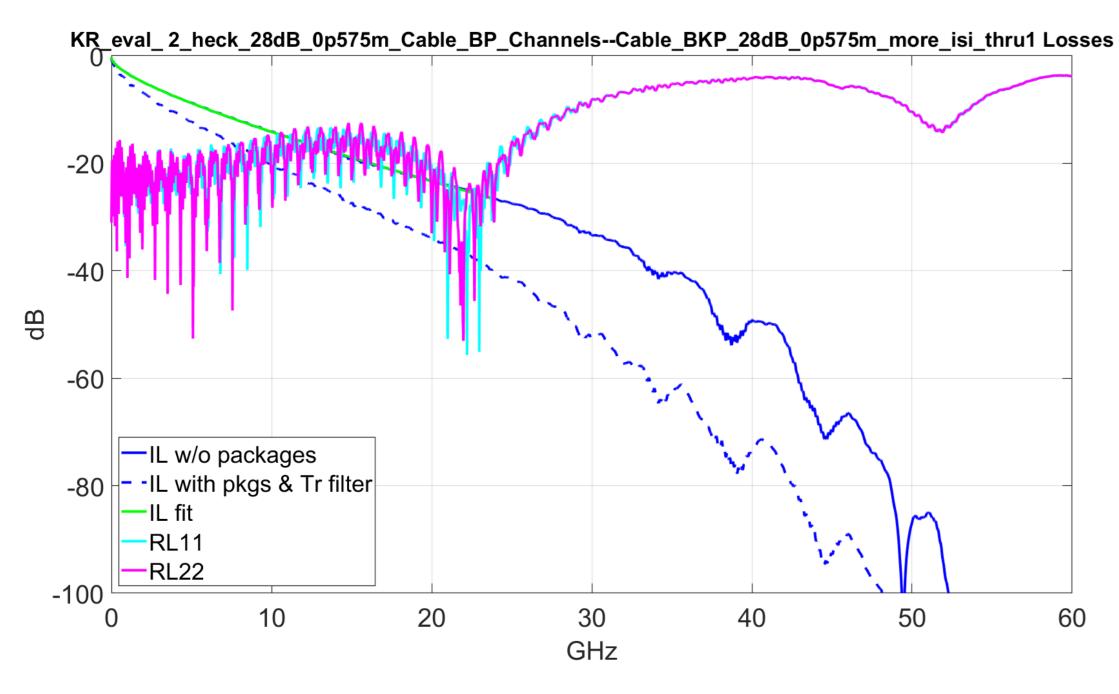


Simulation setup

32 Gbps NRZ; 32 samples per UI 1e6 bits using PRBS-23

If bit-by-bit flow, wave= impulse_matrix (x) ideal bit-pattern

Figure. Channel simulation setup.

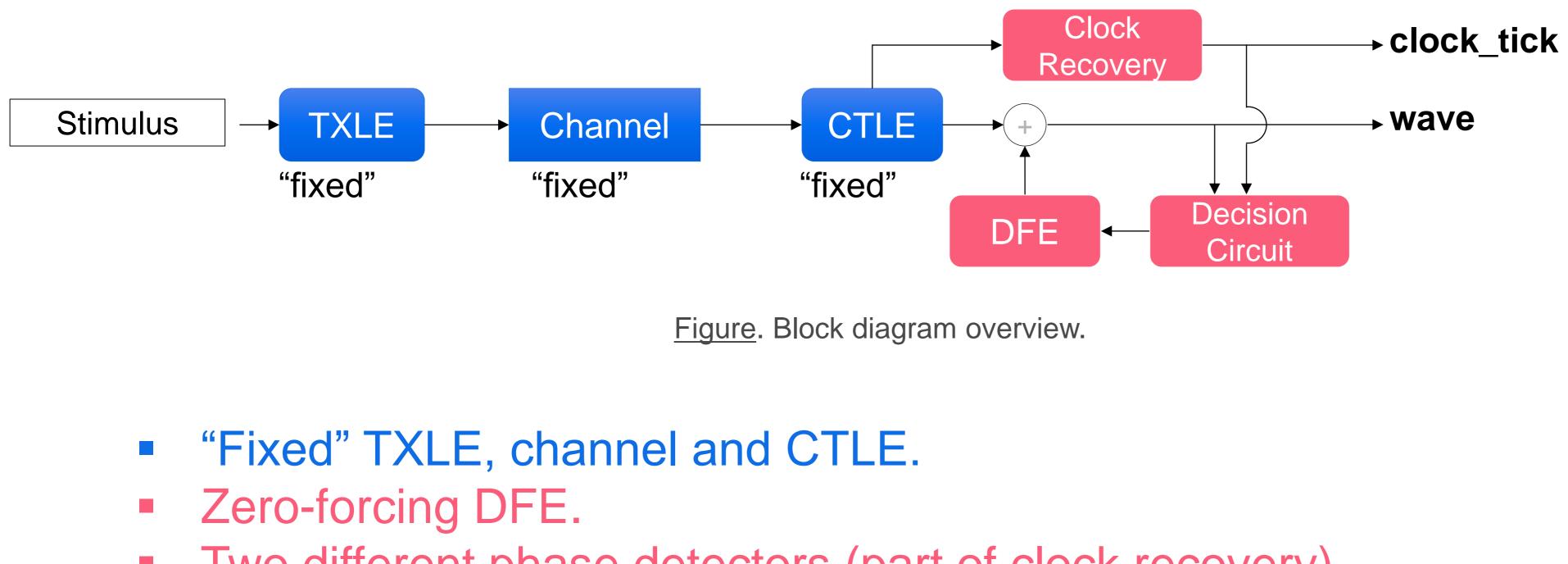

- Rx IBIS-AMI model reads the <u>equalized impulse</u> matrix and wave from a .csv. \bullet
- \bullet

The above setup ensures the same waveform along with sampling information across different EDA tools. The results of the different EDA tools is compared to a reference, which is generated using code shared in backup.

Channel and Equalization

- .s4p taken from IEEE 802.3 public area. -28.53 dB @ 16 GHz.
- Realistic channel and specification defined equalization used.

1 2 Parameter 3 f_b 4 f_min 5 Delta_f 6 C_d 7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M 22	Table 93A-1 para Setting 32 0.05 0.01 [1.2e-4 1.2e-4] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	meters Units GBd GHz GHz nF nH nF mm mm mm mm mm nF Ohm Ohm V	Information Inform	DIAGNOSTICS DISPLAY_WINDOW CSV_REPORT RESULT_DIR SAVE_FIGURES Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	I/O control 1 1 .\results\100GEL_ 0 [1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03 1	logical logical logical 1_PK_KR_{date logical logical dB dB dB dB dB	Parameter	Setting [0 0.002 0.0003] 6.141E-03 [87.5 87.5 ; 92.5 92.5] si_3ck_01_0119 & mellitz_3 Table 92–12 parameter Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3 110.3	Units ns/mm Ohm 3ck_01_0119
3 f_b 4 f_min 5 Delta_f 6 C_d 7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	32 0.05 0.01 [1.2e-4 1.2e-4] [0 0] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	GBd GHz nF nH nF mm mm mm mm mm nF Ohm Ohm V	[TX RX] [TX RX] [TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [test cases] [TX RX]	DISPLAY_WINDOW CSV_REPORT RESULT_DIR SAVE_FIGURES Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	1 1 .\results\100GEL_ 0 [1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	logical logical 1_PK_KR_{date logical logical dB dB dB ns	package_tl_gamma0_a1_a2 package_tl_tau package_Z_c benarts Parameter board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	[0 0.002 0.0003] 6.141E-03 [87.5 87.5 ; 92.5 92.5] si_3ck_01_0119 & mellitz_3 Table 92–12 parameter Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	ns/mm Ohm Bck_01_0119 s ns/mm Ohm Mm mm
4 f_min 5 Delta_f 6 C_d 7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	0.05 0.01 [1.2e-4 1.2e-4] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	GHz GHz nF nH nF mm mm mm nF Ohm Ohm V	[TX RX] [TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [test cases] [TX RX]	CSV_REPORT RESULT_DIR SAVE_FIGURES Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	1 .\results\100GEL_ 0 [1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	logical 1_PK_KR_{date logical logical dB dB dB ns	package_tl_tau package_tl_tau package_Z_c benarts parameter board_tl_gamma0_a1_a2 board_tl_tau board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	6.141E-03 [87.5 87.5 ; 92.5 92.5] si_3ck_01_0119 & mellitz_3 Table 92–12 parameter Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	Ohm Ohm Sck_01_0119 s ns/mm Ohm Mm mm
5 Delta_f 6 C_d 7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	0.01 [1.2e-4 1.2e-4] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	GHz nF nH nF mm mm mm nF Ohm Ohm V	[TX RX] [TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [test cases] [TX RX]	RESULT_DIR SAVE_FIGURES Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	.\results\100GEL_ 0 [1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	1_PK_KR_{date logical logical dB dB dB ns	package_Z_c benarts Parameter board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	[87.5 87.5 ; 92.5 92.5] si_3ck_01_0119 & mellitz_3 Table 92–12 parameter Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	Ohm Ohm Sck_01_0119 s ns/mm Ohm Mm mm
6 C_d 7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[1.2e-4 1.2e-4] [0 0] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	nF nH nF mm mm mm mm nF Ohm Ohm V	[TX RX] [TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [test cases] [TX RX]	SAVE_FIGURES Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	0 [1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	logical logical dB dB ns	Parameter board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	si_3ck_01_0119 & mellitz_3 Table 92–12 parameter Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	8ck_01_0119 s
7 L_s 8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[0 0] [0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	nH nF mm mm mm nF Ohm Ohm V	[TX RX] [TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [test cases] [TX RX]	Port Order RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	[1 3 2 4] KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	dB dB ns	Parameter board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	s ns/mm Ohm mm mm
8 C_b 9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[0 0] [2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	nF mm mm mm nF Ohm Ohm V	[TX RX] [test cases to run] [test cases] [test cases] [test cases] [test cases] [TX RX]	RUNTAG COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	KR_eval_ 0 Operational 3 10.5 1.00E-05 6.16E-03	dB dB ns	board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	Setting [0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	ns/mm Ohm mm mm
9 z_p select 10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[2] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	mm mm mm nF Ohm Ohm V	[test cases to run] [test cases] [test cases] [test cases] [test cases] [TX RX]	COM_CONTRIBUTION COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	0 Operational 3 10.5 1.00E-05 6.16E-03	dB dB ns	board_tl_gamma0_a1_a2 board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	[0 3.8206e-04 9.5909e-05] 5.790E-03 100 110.3 110.3	Ohm mm mm
10 z_p (TX) 11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	mm mm nF Ohm Ohm V	[test cases] [test cases] [test cases] [test cases] [TX RX]	COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	Operational 3 10.5 1.00E-05 6.16E-03	dB dB ns	board_tl_tau board_Z_c z_bp (TX) z_bp (NEXT)	5.790E-03 100 110.3 110.3	Ohm mm mm
11 z_p (NEXT) 12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[12 29; 1.8 1.8] [12 31; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	mm mm nF Ohm Ohm V	[test cases] [test cases] [test cases] [TX RX]	COM Pass threshold ERL Pass threshold DER_0 T_r FORCE_TR	3 10.5 1.00E-05 6.16E-03	dB ns	board_Z_c z_bp (TX) z_bp (NEXT)	100 110.3 110.3	Ohm mm mm
12 z_p (FEXT) 13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[12 31; 1.8 1.8] [12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	mm nF Ohm Ohm V	[test cases] [test cases] [TX RX]	ERL Pass threshold DER_0 T_r FORCE_TR	10.5 1.00E-05 6.16E-03	dB ns	z_bp (TX) z_bp (NEXT)	110.3 110.3	mm mm
13 z_p (RX) 14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[12 29; 1.8 1.8] [0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	mm nF Ohm Ohm V	[test cases] [TX RX]	DER_0 T_r FORCE_TR	1.00E-05 6.16E-03	ns	z_bp (NEXT)	110.3	mm
14 C_p 15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[0.87e-4 0.87e-4] 50 [50 50] 0.415 0.415	nF Ohm Ohm V	[TX RX]	T_r FORCE_TR	6.16E-03				
15 R_0 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	50 [5050] 0.415 0.415	Ohm Ohm V		FORCE_TR			z bp (FEXT)	110.3	mm
Information Information 16 R_d 17 A_v 18 A_fe 19 A_ne 20 L 21 M	[50 50] 0.415 0.415	Ohm V	[TX RX]	_	1	logical			
17 A_v 18 A_fe 19 A_ne 20 L 21 M	0.415 0.415	V	[TX RX]			logical	z_bp (RX)	110.3	mm
18 A_fe 19 A_ne 20 L 21 M	0.415						C_0	[0.29e-4]	nF
19 A_ne 20 L 21 M		v		TDR and ERL options			C_1	[0.19e-4]	nF
20 L 21 M	0.000	-		TDR	1	logical	Include PCB	0	logical
21 M	0.608	V		ERL	1	logical			
	2			ERL_ONLY	0	logical		Floating Tap Control	
22	32			TR_TDR	0.01	ns	N_bg	0	0 1 2 or 3 groups
	filter and E			N	3000		N_bf	0	taps per group
23 f_r	0.75	*fb		beta_x	2.3407E+09		N_f	0	UI span for floating taps
24 c(0)	0.54		min	rho_x	0.19		bmaxg	0.2	max DFE value for floating ta
25 c(-1)	[-0.1667]		[min:step:max]	fixture delay time	[00]	[port1 port2]	cable assemblies require this for each HCB		
26 c(-2)	[0]		[min:step:max]	TDR_W_TXPKG	0		ICN parameters (v2.73)		
27 c(-3)	[0]		[min:step:max]	N_bx	3	UI	f_f	21.448	
28 c(1)	[-0.0417]		[min:step:max]	Re	ceiver testing		f_n	21.448	
29 N_b	3	UI		RX_CALIBRATION	0	logical	f_2	24.000	
30 b_max(1)	0.8			Sigma BBN step	5.00E-03	V	A_ft	0.600	
31 b_max(2N_b)	0.3			1	Noise, jitter		A_nt	0.600	
32 g_DC	[-15]	dB	[min:step:max]	sigma_RJ	0	UI	heck_3ck_03b_0319	Adopted Mar 2019	
33 f_z	12.8	GHz		A_DD	0	UI	walker_3ck_01d_0719	Adopted July 2019	
34 f_p1	12.8	GHz		eta_0	8.2E-09	V^2/GHz	result of R_d=50		
35 f_p2	32	GHz		SNR_TX	100	dB	benartsi_3ck_01a_0719	no used for KR	
36 g_DC_HP	[0]		[min:step:max]	R_LM	1		mellitz_3ck_03_0919		
37 f_HP_PZ		GHz		CDR	Mod-MM	M or Mod-MM	under consideration		


COM ver2.75.

Fixed TXLE, Fixed CTLE and 3-tap DFE.

Top level overview

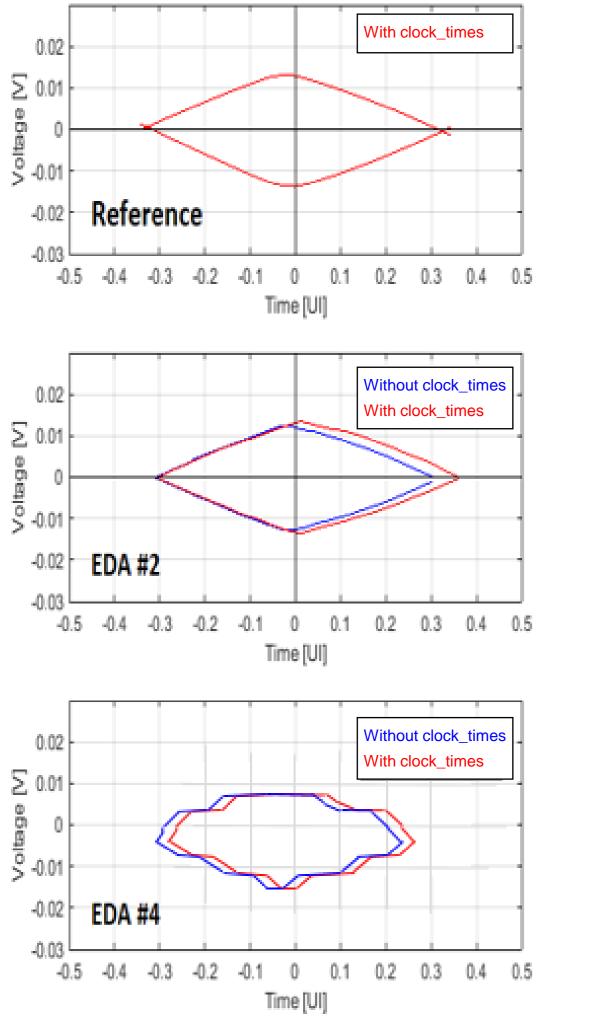
- Two different phase detectors (part of clock recovery).
 - 1. Mueller-Muller (MM) Phase detector
 - 2. Modified Mueller-Muller (Mod-MM) Phase detector

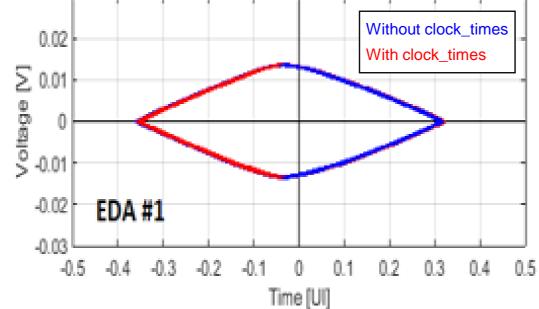
- Align the sampling clock so that precursor ISI equals to post-cursor ISI.

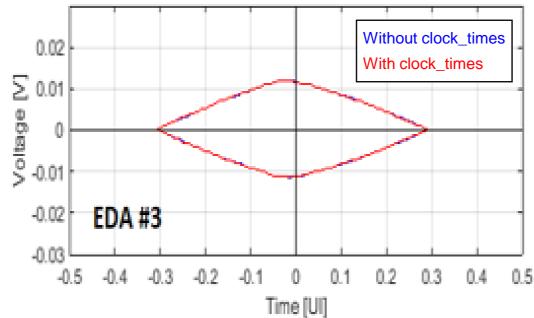
- Modified version of the Mueller-Muller PD where the impact of first pre-cursor (pre-1) is removed.

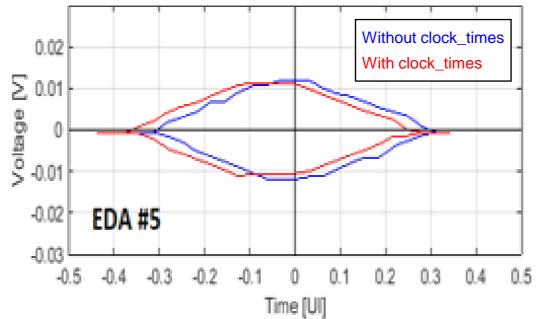
The performance of MM PD and Mod-MM PD highly depends on the choice of transmitter equalization (TXLE). This work does

compare one phase detector with another!

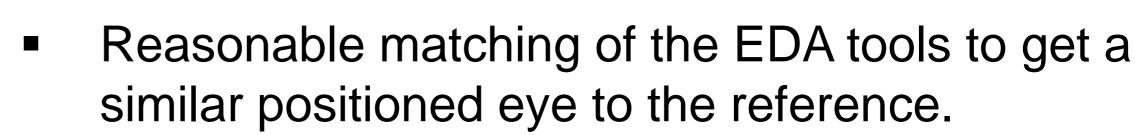


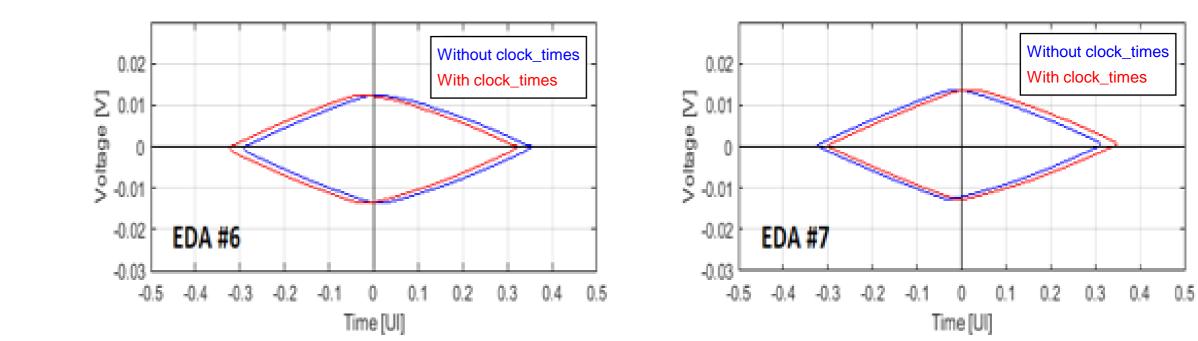

Results of Bit-by-bit flow



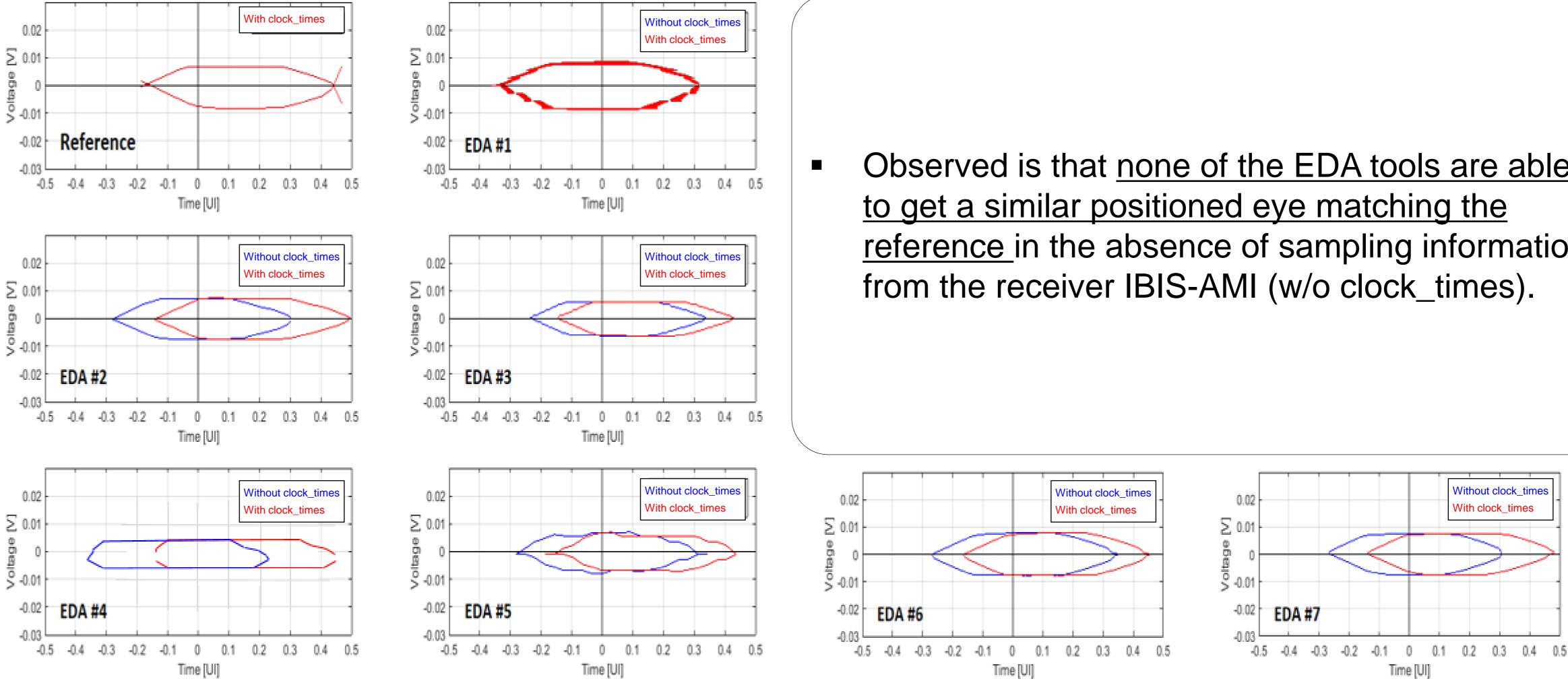


Results. Bit-by-bit flow. MM PD.





IBIS Summit at DesignCon 2021



10

Results. Bit-by-bit flow. Mod-MM PD.

IBIS Summit at DesignCon 2021

Observed is that none of the EDA tools are able to get a similar positioned eye matching the <u>reference</u> in the absence of sampling information from the receiver IBIS-AMI (w/o clock_times).

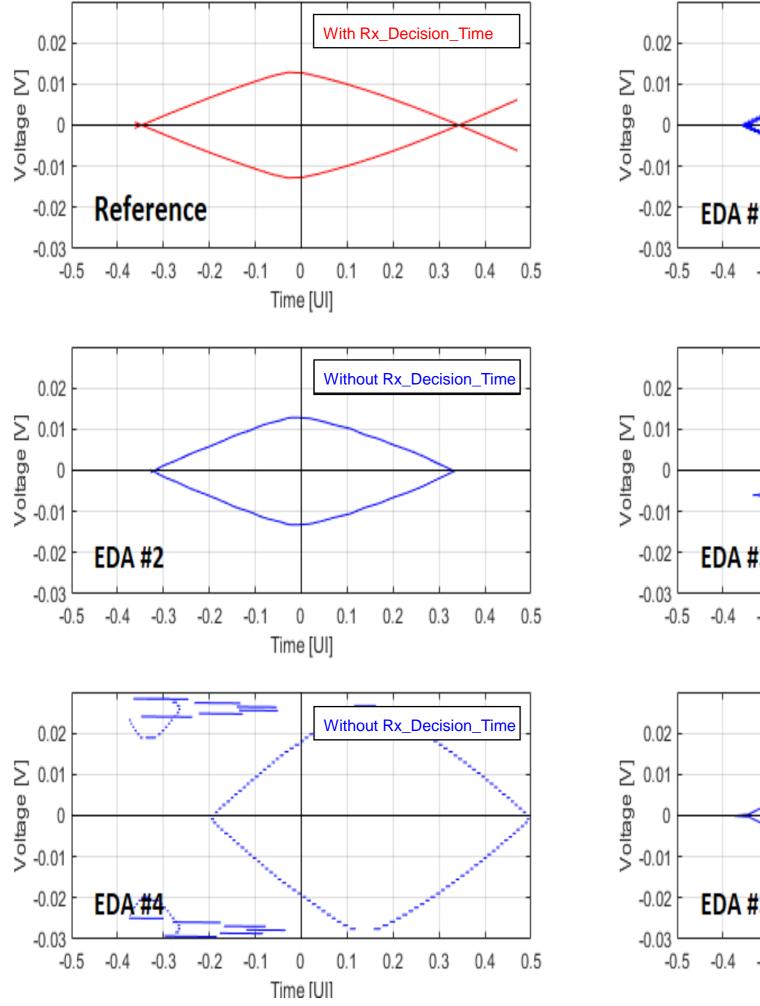
11

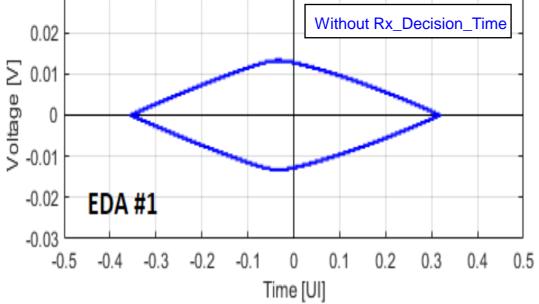
Results. Bit-by-bit BER contour margin.

		EH	EW
Sampling Method	EDA tool	[mV]	[UI]
	Reference	26.6	0.66
	EDA #1	25.7	0.64
	EDA #2	26.4	0.67
MM-PD	EDA #3	22.3	0.60
	EDA #4	24.7	0.54
	EDA #5	21.7	0.59
	EDA #6	25.6	0.65
	EDA #7	26.8	0.64
	Reference	14.4	0.64
	EDA #1	15.4	0.65
	EDA #2	13.8	0.64
Mod-MM PD	EDA #3	12.1	0.58
	EDA #4	12.0	0.50
	EDA #5	14.7	0.65
	EDA #6	15.5	0.62
	EDA #7	14.3	0.61

IBIS Summit at DesignCon 2021

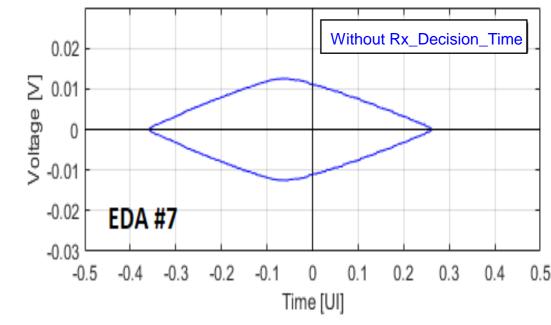
- The results among the different EDA tools are in the ballpark of the reference.
- Observed is a standard deviation of <u>2mV/0.05UI</u> for the set of seven EDA tools.

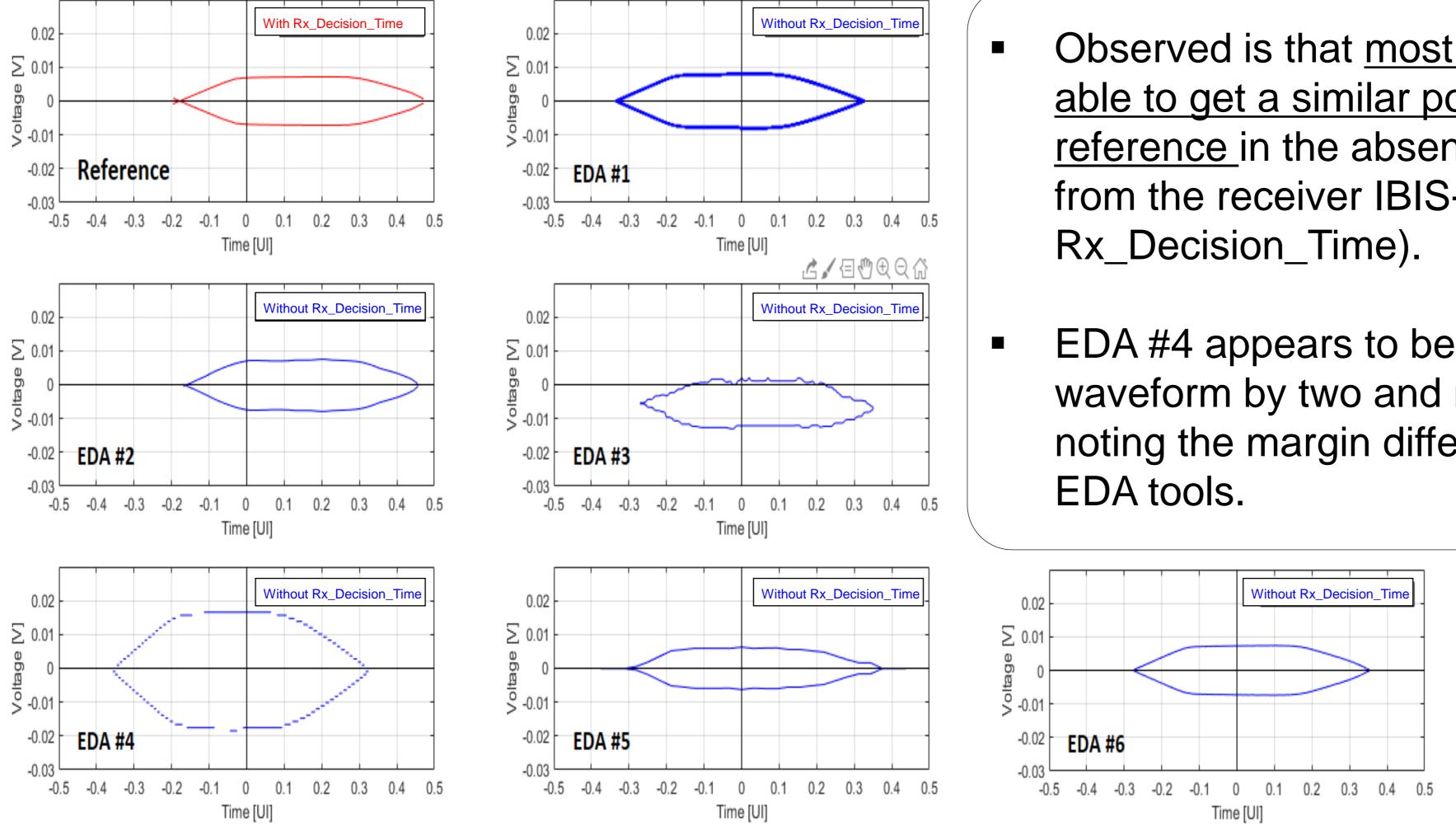



Results of statistical flow

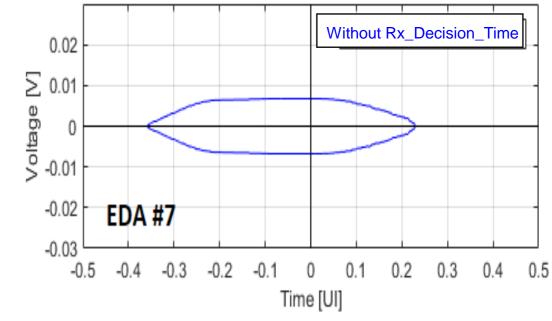


Results. Statistical flow. MM PD.




IBIS Summit at DesignCon 2021

- EDA tools have to guess on sampling point information. About half the EDA tools give a good representation compared to the reference.
- Rx_Decision_Time to be incorporated into IBIS spec 7.1
- EDA #4 appears to be scaling the differential waveform by two and may be dropped when noting the margin difference across the different EDA tools.



Results. Statistical flow. Mod-MM PD.

IBIS Summit at DesignCon 2021

- Observed is that most of the EDA tools are not able to get a similar positioned eye matching the <u>reference</u> in the absence of sampling information from the receiver IBIS-AMI (w/o
- EDA #4 appears to be scaling the differential waveform by two and may be dropped when noting the margin difference across the different

Results. Statistical BER contour margin.

		Max. EH	EW
Sampling Method	EDA tool	[mV]	[UI]
	Reference	25.6	0.67
	EDA #1	25.9	0.64
	EDA #2	25.9	0.66
	EDA #3	25.4	0.65
MM-PD	EDA #4	53.3	0.66
	EDA #5	24.0	0.69
	EDA #6	26.0	0.65
	EDA #7	25.1	0.62
	Reference	14.2	0.67
	EDA #1	15.4	0.63
	EDA #2	14.9	0.61
	EDA #3	13.2	0.62
Mod-MM PD	EDA #4	33.2	0.67
	EDA #5	11.8	0.69
	EDA #6	14.7	0.63
	EDA #7	14.4	0.58

EDA incorrectly scaling by

two

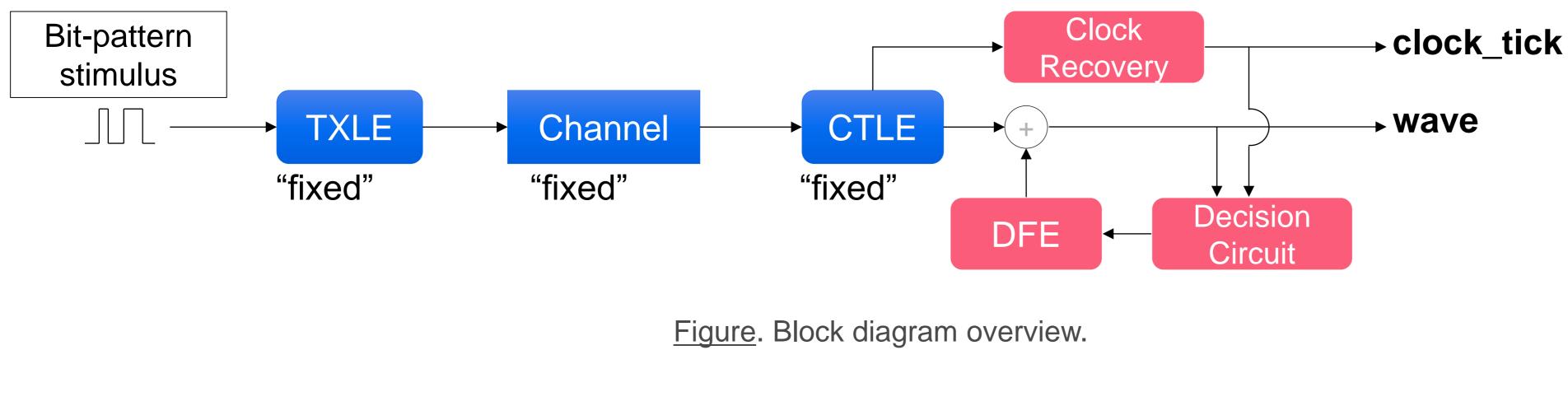
The results among the different EDA tools are in the ballpark of the reference. Observed is a standard deviation of 1.3mV/0.04UI for the set of seven EDA tools.

2. Importance of sampling information in IBIS

Sampling controls in the IBIS specification

When model does not return sampling information

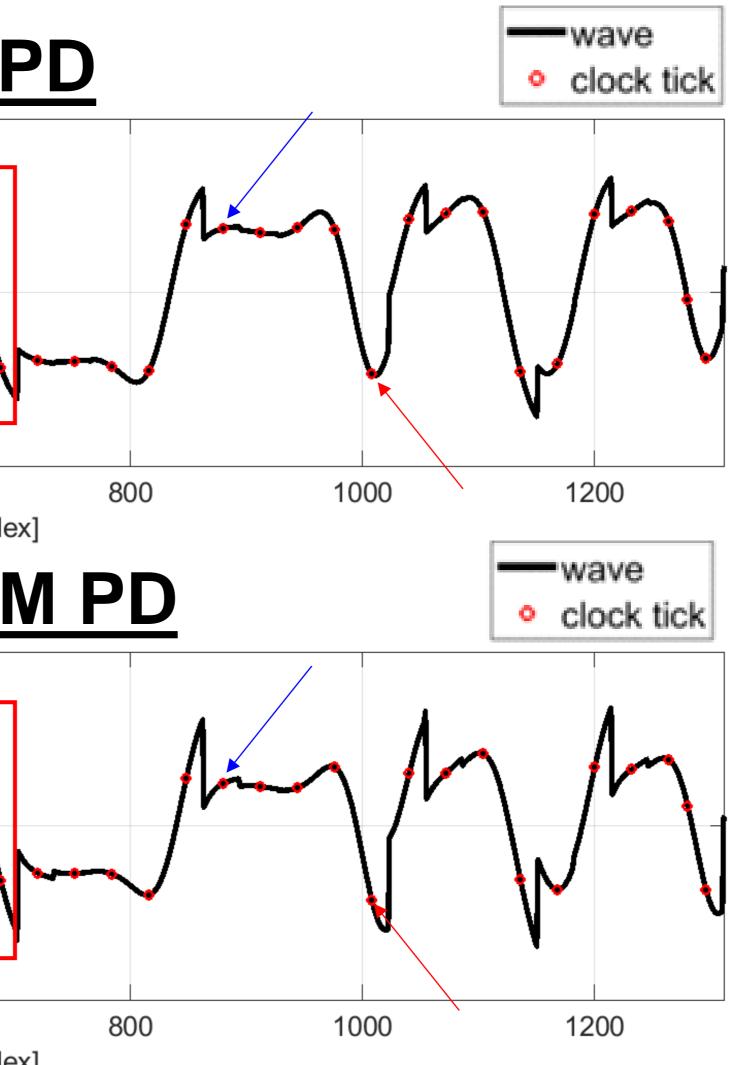
	-
Bit-by-bit flow	Comment
clock_times	Tells the EDA tool about the sampling position
Rx_Clock_PDF	Tells the EDA tool about the probability density function of the recovered clock (PDF)
Rx_Clock_Recovery_Mean - BIRD 206; status: Accepted - Editorial change!	Tells the EDA tool about the static offset between the recovered clock and the point half way between the PDF medians of consecutive edge threshold crossing times
Rx_Clock_Recovery_Rj	Tells the EDA tool about the standard deviation of a Gaussian phase noise exhibited by the recovered clock
Rx_Clock_Recovery_Dj	Tells the EDA tool about the worst-case half the peak to peak variation of the recovered clock
Rx_Clock_Recovery_Sj	Tells the EDA tool about the half of the peak to peak variation of a sinusoidal phase noise exhibited by the recovered clock
Rx_Clock_Recovery_DCD	Tells the EDA tool about the half of the peak to peak variation of a clock duty cycle distortion exhibited by the recovered clock
	clock_times Rx_Clock_PDF Rx_Clock_Recovery_Mean - BIRD 206; status: Accepted - Editorial change! Rx_Clock_Recovery_Rj Rx_Clock_Recovery_Dj Rx_Clock_Recovery_Dj


IBIS Summit at DesignCon 2021

<u>Table</u>. Sampling controls in the IBIS specification.

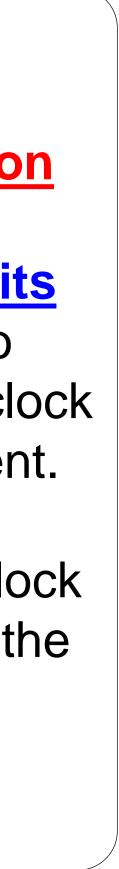
Experimenting with different sampling

- "Fixed" TXLE, channel and CTLE.
- Zero-forcing DFE.
- Two different phase detectors (part of clock recovery).
 - Mueller-Muller (MM) Phase detector 1. - Align the sampling clock so that precursor ISI equals to post-cursor ISI.
 - 2. Modified Mueller-Muller (Mod-MM) Phase detector
 - Modified version of the Mueller-Muller PD where the impact of first pre-cursor (pre-1) is removed.

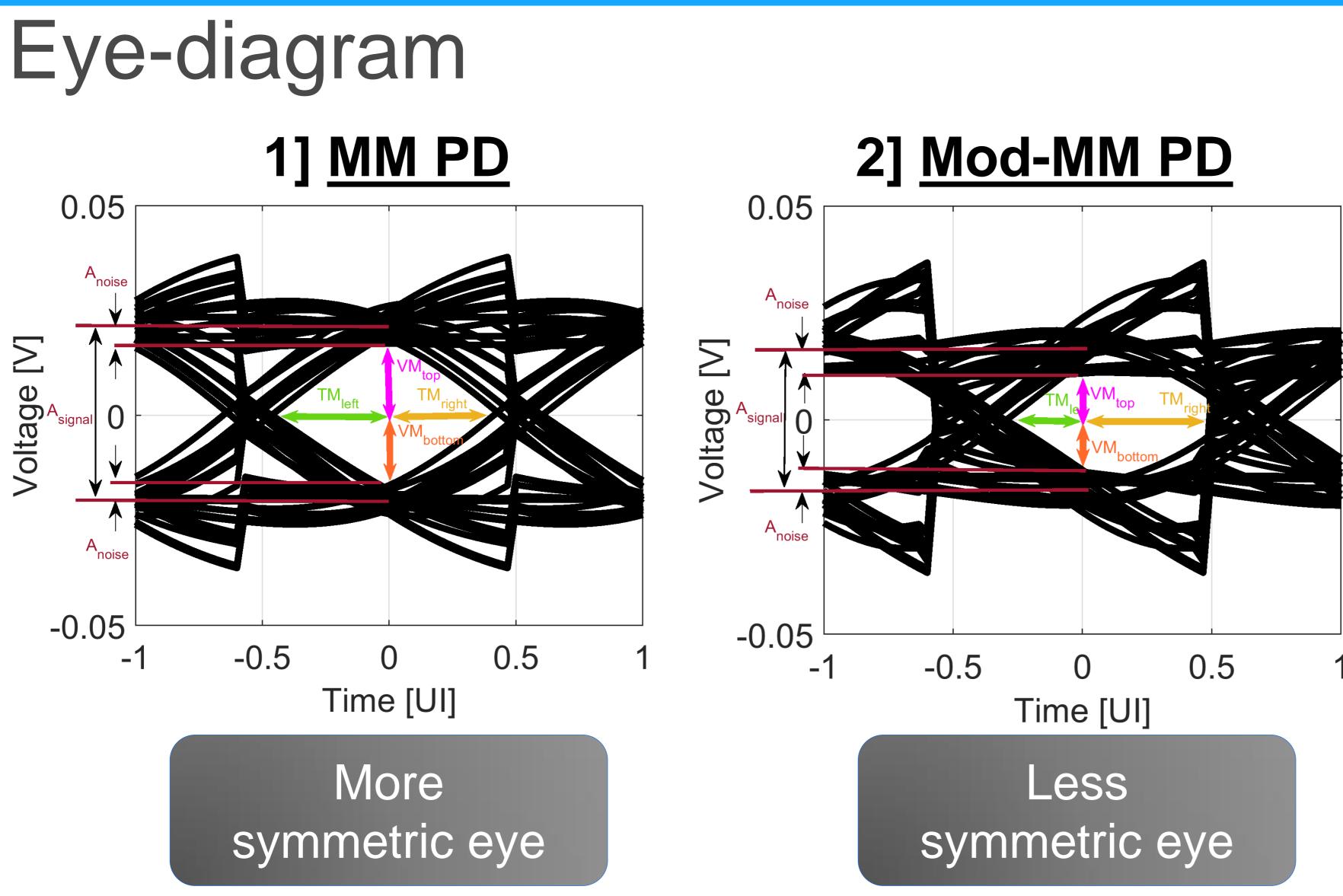

The performance of MM PD and Mod-MM PD highly depends on the choice of transmitter equalization (TXLE). This work does

compare one phase detector with another!

Wave and clock_ticks 1] <u>MM PD</u> 0.05 Voltage [V] 0 -0.05 400 200 600 Time [index] 2] Mod-MM PD 0.05 Voltage [V] 0 -0.05 200 400 600 Time [index]

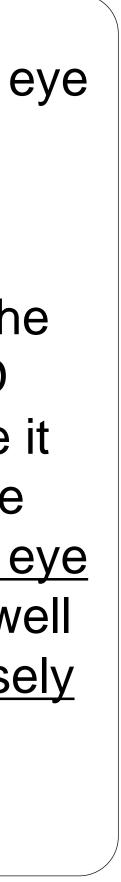


The transition and <u>non-</u> transition bits


may serve to assess the clock tick placement.

The MM PD places the clock tick close to the optimal sampling.

IBIS Summit at DesignCon 2021

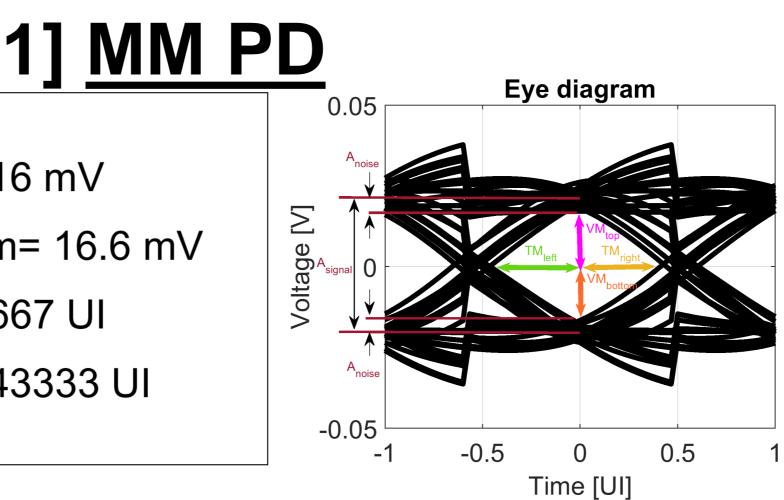


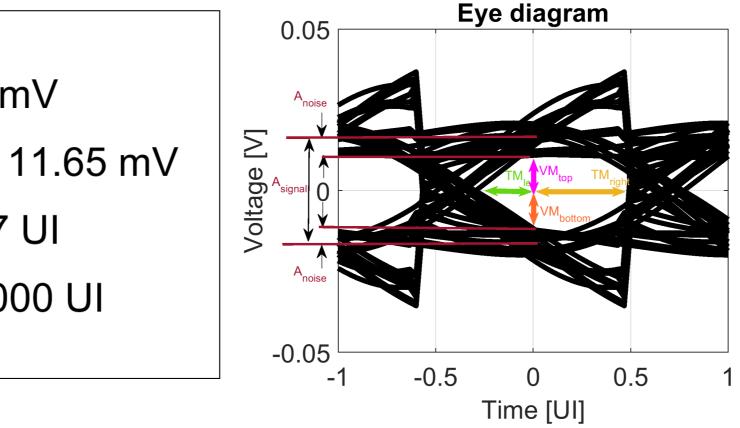
IBIS Summit at DesignCon 2021

The MM PD eye diagram appears qualitatively better than the Mod-MM PD eye because it yields a more symmetrical eye opening as well as more closely grouped trajectories.

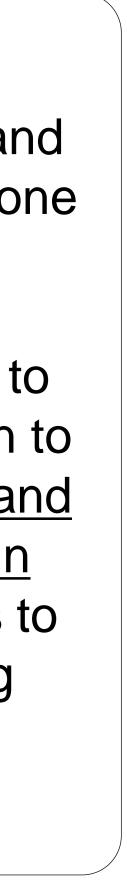
21

Eye-margin

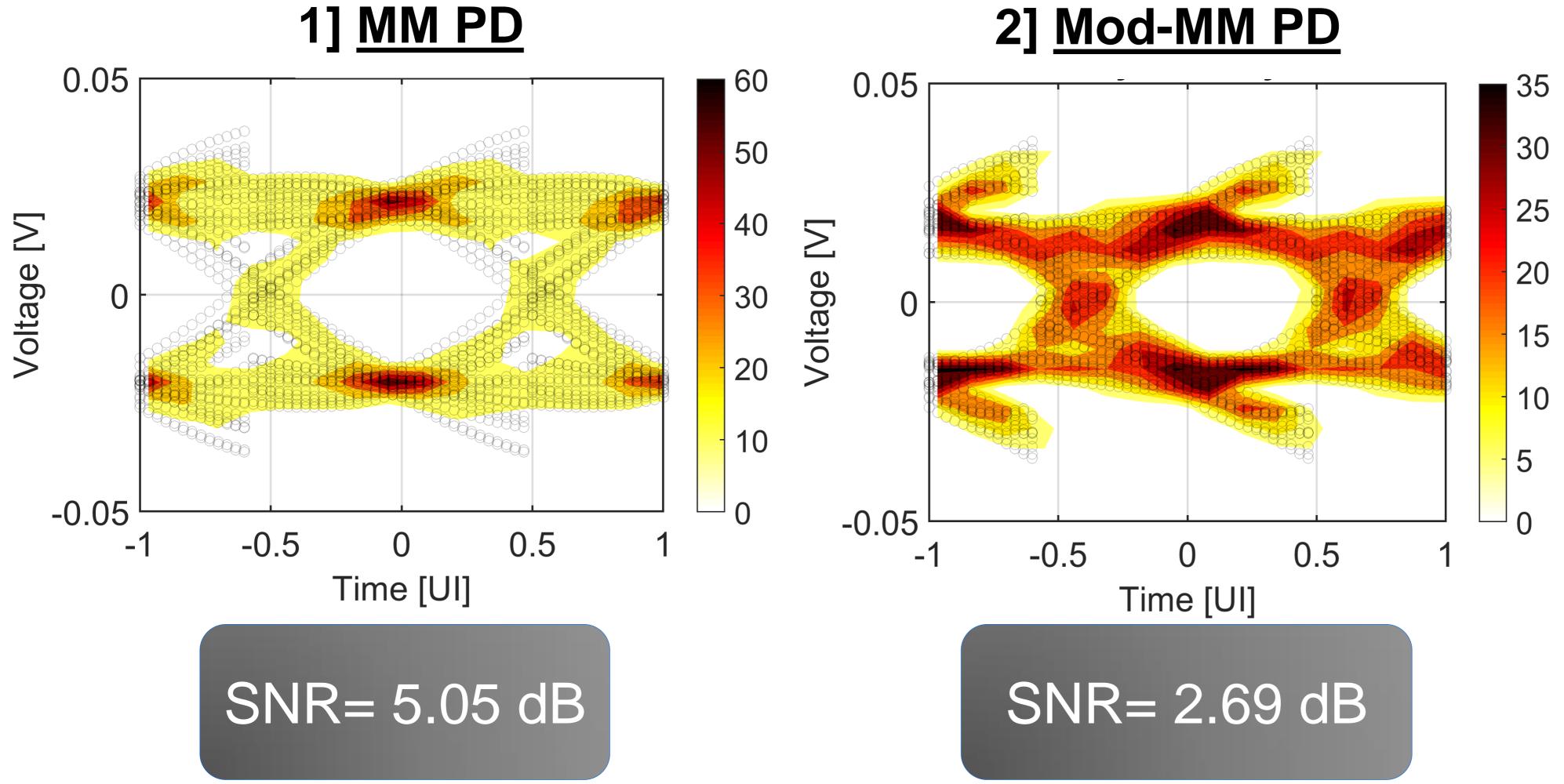

EH= 33.76mV ~ EW= 0.900 UI -


VM_{top}: Voltage Margin- top= 17.16 mV VM_{bottom}: Voltage Margin- bottom= 16.6 mV TM_{leff}: Timing Margin- left= 0.46667 UI TM_{right}: Timing Margin- right= 0.43333 UI

2] Mod-MM PD


VM_{top}: Voltage Margin- top= 10.91 mV EH= 22.56mV ≺ VM_{bottom}: Voltage Margin- bottom= 11.65 mV TM_{leff}: Timing Margin- left= 0.26667 UI EW= 0.757 UI TM_{right}: Timing Margin- right= 0.49000 UI

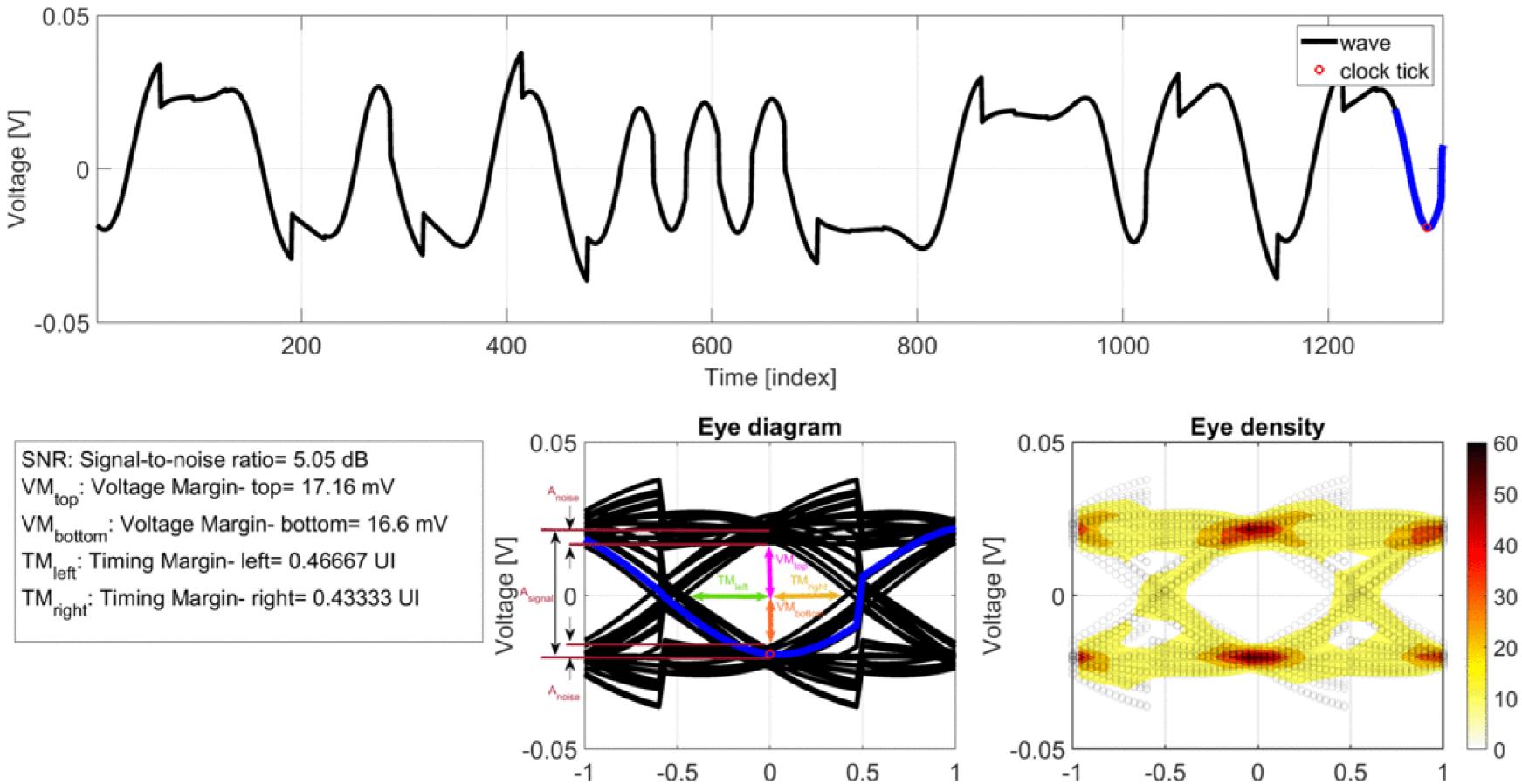
IBIS Summit at DesignCon 2021

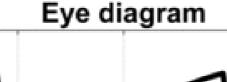


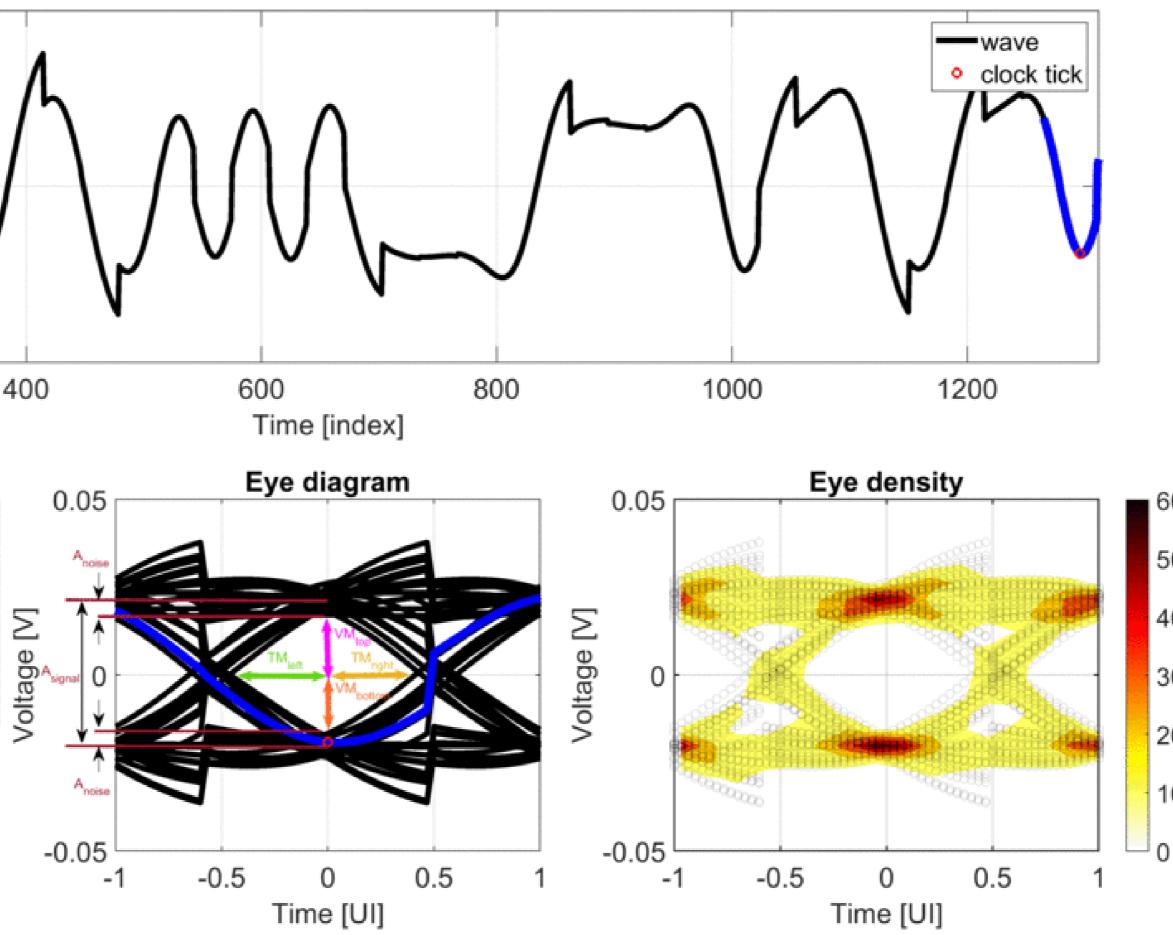
Eye height and eye width alone may be misleading, recommend to pay attention to the voltage and timing margin with regards to the sampling point.


22

Eye-density

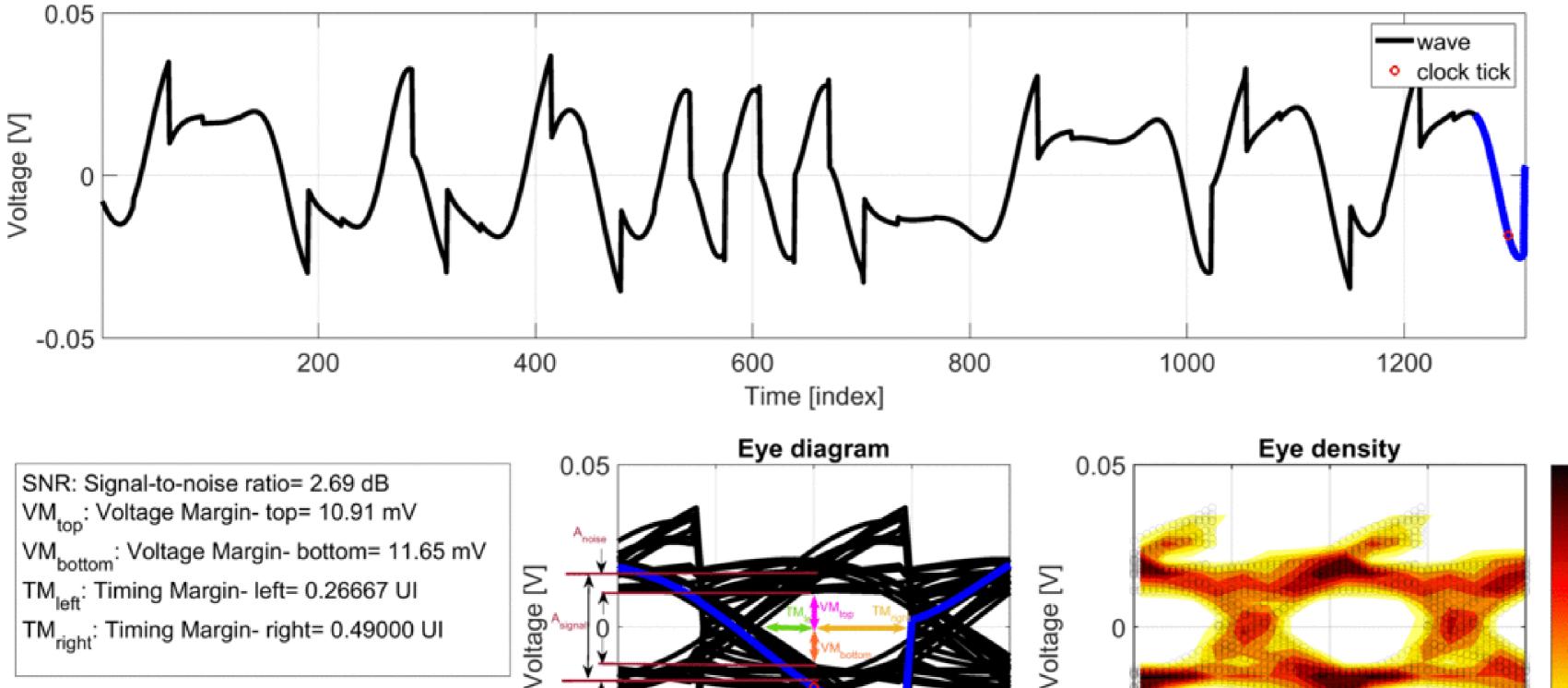

IBIS Summit at DesignCon 2021


Eye-density along with SNR are good tools in noting the noise coming due to residual ISI and jitter & may serve as diagnostic tools.

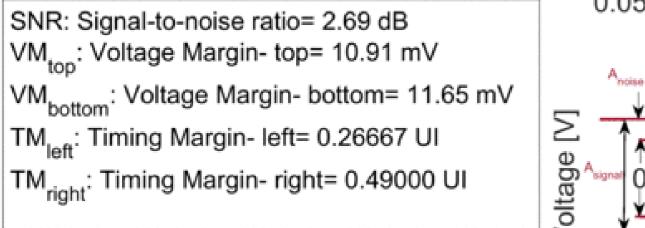


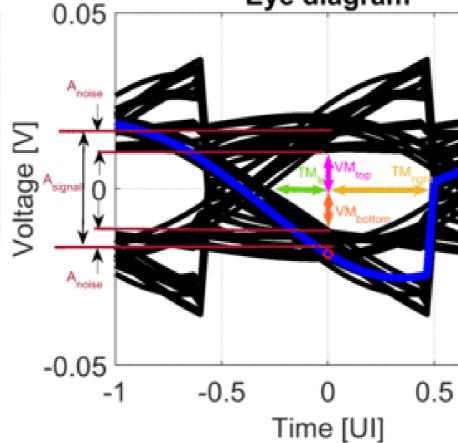
Animation showing eye generation (MM PD)

IBIS Summit at DesignCon 2021


The eye diagram is built by <u>overlaying</u> successive segments of the wave.

It provides a simple and useful tool to visualize ISI between data bits.





Animation showing eye generation (Mod-MM PD)

IBIS Summit at DesignCon 2021

-0.05

-1

-0.5

- The eye diagram is built by <u>overlaying</u> successive segments of the wave.
- It provides a simple and useful tool to visualize ISI between data bits.

35

30

25

20

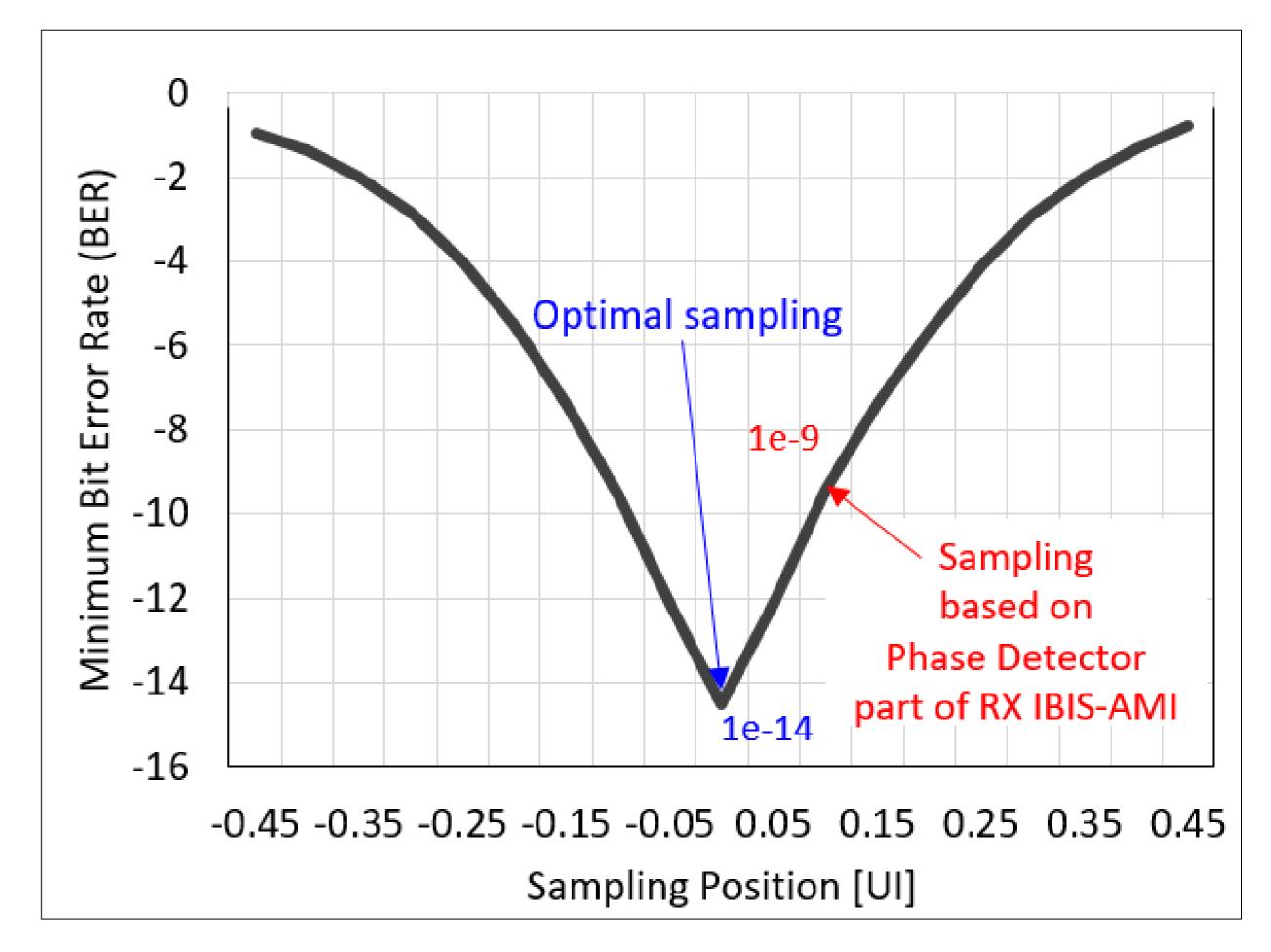
15

10

5

0.5

0


Time [UI]

Importance of sampling

- It is important for the EDA tool to use the sampling information given by the receiver **IBIS-AMI** model.
- Optimal sampling may lead to optimistic margin and not be representative of the real hardware.

<u>Figure</u>. Impact of sampling on BER.

Key takeaway

- AMI model.
 - sampling point across the different EDA tools.
- used to specify characteristics of the receiver's recovered clock.
- <u>1e6 bits despite the same wave and clock_times along with bit-pattern.</u>
 - Further work is needed in working with the different EDA tool vendors in looking at the results.

It is important for the EDA tool to use the sampling information given by the receiver IBIS-

With sampling information returned by the RX IBIS-AMI model to the EDA tool, observed similar eye shape and

The IBIS specification calls out 'RECEIVER RECOVERED CLOCK RESERVED PARAMETERS', which may be

Results of bit-by-bit flow show variation in the <u>absolute value of EH and EW at 1e-5 BER for</u>

Any questions?

You can find me at: hanseldsilva@achronix.com

BER contour script

```
clc:
clear all;
close all;
%Author: Adam Gregory
%artificial impulse response
%triangle wave with risetime twice as fast as fall time
%followed by random noise with sigma= 0.5 mV combined with decaying
%exponential so noise falls to zero as delay increases
ir= [zeros(1,100) (0.1:0.04:1)*2.5e-3 (1-0.02:-0.02:0)*2.5e-3
randn(1,1000)*5e-4.*exp(-5e-3*[1:1000])];
UI= 32;
num bits= le3;
pulse= filter(ones(1,UI),1,ir);
%set [-0.5 0.5] bit pattern (no DC)
bit pattern= round(rand(1,num bits))-0.5;
%set bit pattern to UI increments to conv with pulse
bit_pattern_UI(1:UI:UI*num_bits) = bit_pattern;
wave= conv(pulse,bit_pattern_UI);
%easy sample at peak of pulse
[tmp,ts] = max(pulse);
%clock times are UI increments of ts
clock_times= (1:UI:length(bit_pattern)*UI)+ts-1;
```

```
Seve contour
half UI= ceil(UI/2);
%eye contour must know whether is a 1 or 0
%if the pattern was unknown, this can also be discovered by checking if
the
%sample voltage [wave(clock times)] is positive/negative. However that
%only works for open eye.
sv= wave(clock times);
ones idx= find(bit pattern>0);
zeros idx= find(bit pattern<0);</pre>
for j=1:UI
    sample vector= wave(clock times-half UI+j);
    %lst column=1 contour
    %2nd column= 0 contour
    eye_contour(j,1) = min(sample_vector(ones_idx));
    eye contour(j,2) = max(sample vector(zeros idx));
end
%full eye density
for j=1:UI
    sample vector= wave(clock times-half UI+j);
    eye_density(l:num_bits,j) = sample_vector;
end
figure;
plot(eye contour);
figure;
plot(eye_density');
```

