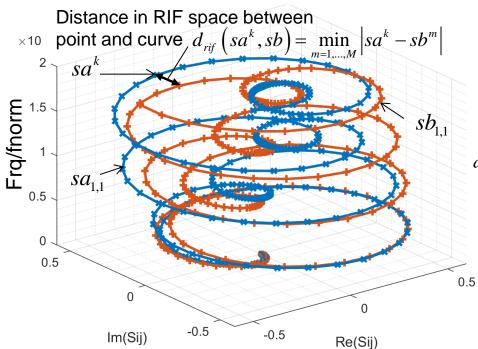


Comparison of Interconnect Model Validation with FSV and SPS Metrics

Alistair Duffy, De Montfort University
Gang Zhang, Harbin Institute of Technology
Yuriy Shlepnev, Simberian Inc.

IBIS Virtual Summit with DesignCon 2021, San Jose, California

August 19, 2021


Introduction

- Any interconnect design process must include analysis to measurement validation step
- The validation requires formal and automated comparison of simulated and measured S-parameters
 - It can be done either with Feature Selective Validation (FSV)
 - A.P. Duffy, G. Zhang, FSV: State of the Art and Current Research Fronts, IEEE Electromagnetic Compatibility Magazine, Volume 9, #3, 2020, p. 55-62.
 - Or with recently introduced S-Parameter Similarity (SPS) metric
 - Y. Shlepnev "Evaluation of S-Parameters Similarity with Modified Hausdorff Distance", May 20, 2021 at http://arxiv.org/abs/2105.10057
 - Y. Shlepnev, S-Parameters Similarity Metric, Simberian Inc., App note #2021_05, May 24, 2021. available at https://www.simberian.com/AppNotes.php
- This presentation is the first attempt to compare two metrics...

S-Parameters Similarity (SPS) Metric

3D Spiral Plots of 2 S-parameters (Real-Imaginary-Frequency or RIF)

Modified Housdorff Distance(MHD) for S-Matrix Element *i,j*

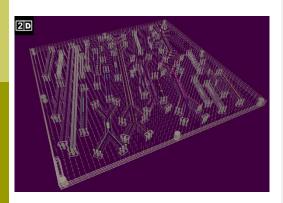
$$d_{MH}\left(sa,sb\right) = \frac{1}{K} \sum_{k=1}^{K} d_{rif}\left(sa^{k},sb\right)$$

MHD for S-Matrix NxN:

$$d_{MH}(SA, SB) = \max \left[d_{MH}(sa_{i,j}, sb_{i,j}), i, j = 1, ..., N\right]$$

S-Parameters Similarity (SPS) Metrics:

$$SPS(sa_{i,j}, sb_{i,j}) = 100 \cdot \max(1 - d_{MH}(sa_{i,j}, sb_{i,j}), 0)\%$$


^{0.5}
$$SPS(SA, SB) = \min(SPS(sa_{i,j}, sb_{i,j}), i, j = 1, ..., N)$$
%

Frequency axis is scaled as Frq/fnorm for the distance measurement

Analysis to Measurement SPS for CMP-28

Designed and Measured by Wild River Technology Modeled with Simbeor Guide to CMP-28/32 Simbeor Kit, CMP-28 Rev. 4, Sept. 2014.

Mod	lel	Measurement	SPS_SE	SPS_SE	SPS_SE
			10 GHz	35 GHz	50 GHz
1 SL_S	E_2inch_J6J5	cmp28_strpl_2in_50ohm_p1J6_p2J5_s2p	97.1513	92.5639	84.677
2 SL_S	E_8inch_J7J8	cmp28_strpl_8inch_p1J7_p2J8_s2p	97.8176	91.8262	80.9387
3 SL_S	E_Beatty_25Ohm_J28J27	cmp28_strpl_Beatty_25ohm_p1J28_p2J27_s2p	98.3164	91.7525	81.1544
4 SL_S	E_Resonator_J23J24	cmp28_strpl_resonator_p1J23_p2J24_s2p	98.5621	92.8552	82.7012
5 SL_S	E_Via_Capacitive_J18J17	cmp28_strpl_via_capacitive_p1J18_p2J17_s2p	94.9476	91.1739	82.8437
6 SL_S	E_Via_Backdrilled_J14J13	cmp28_strpl_via_backdrilled_p1J14_p2J13_s2p	97.1172	90.8311	82.0804
7 SL_S	E_2inch_Capacitive_J9J10	cmp28_strpl_2in_Capacitive_p1J10_p2J09_s2p	97.7805	93.0992	87.3275
8 SL_S	E_2inch_Inductive_J11_J12	cmp28_strpl_2in_Inductive_p1J12_p2J11_s2p	97.8352	93.8351	87.8757
9 SL_0	DF_2inch	cmp28_strpl_diff_2inch_J39J40J35J36_s4p	95.9985	91.087	83.0354
10 SL_0	DF_6inch	cmp28_strpl_diff_6inch_J47J48J43J44_s4p	96.8208	93.0776	85.1746
11 MS_	SE_2in_J1_J2	cmp28_mstrp_2in_p1J1_p2J2	97.9111	94.7303	91.8845
12 MS_	SE_8in_J4_J3	cmp28_mstrp_8inch_p1J4_p2J3	97.6372	95.3771	91.645
13 MS_	SE_Beatty_25Ohm_J25_J26	cmp28_mstrp_Beatty_25ohm_p1J25_p2J26	96.5268	93.3182	89.9407
14 MS_	SE_Resonator_J21_J22	cmp28_mstrp_resonator_p1J21_p2J22	98.0708	94.1929	90.5811
15 MS_	SE_GND_Voids_J74_J75	cmp28_gnd_voids_p1J74_p2J75	97.6512	88.4187	83.5582
16 MS_	SE_Graduate Coplanar_J70_J69	cmp28_graduate_coplanar_p1J70_p2J69	97.6924	94.4118	91.4621
17 MS_	SE_Via_Inductive_J15_J16	cmp28_mstrp_via_inductive_p1J15_p2J16	96.6664	93.596	90.0153
18 MS_	SE_Via_Capasitive_J19_J20	cmp28_mstrp_via_capacitive_p1J19_p2J20	96.5088	93.969	90.1057
19 MS_	SE_Via_Pathology_J65_J66	cmp28_via_pathology_p1J65_p2J66	97.2525	91.9582	88.486
20 MS_	DF_2inch	cmp28_mstrp_diff_2inch_J38J37J34J33	95.4645	93.3429	90.407
21 MS_	DF_6inch	cmp28_mstrp_diff_6inch_J46J45J42J41	95.5751	93.9318	90.9123
22 MS_	DF_GND_Cutout	cmp28_mstrp_diff_gnd_cutout_J59J60J55J56	94.4506	91.4807	88.7113
23 MS_	DF_Vias	cmp28_mstrp_diff_vias_J49J50J51J52	95.6808	91.6811	88.4878

Tires: [0, 80) Bad; [80, 90) Inconclusive; [90, 99) Acceptable; [99, 100] Good;

FSV vs SPS for 35 GHz Bandwidth

FSV, 35 GHz

SPS, 35 GHz

⊢	6	١/	•
	J	v	•

[0, 0.1] Excellent (0.1, 0.2] Very Good (0.2, 0.4] Good

(0.4, 0.8] Fair

(0.8, 1.6] Poor

(1.6, inf) Very Poor

SPS:

[99, 100] **Good**

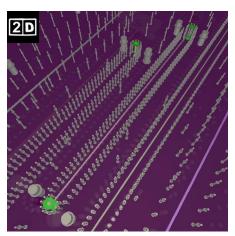
[90, 99) **Acceptable**

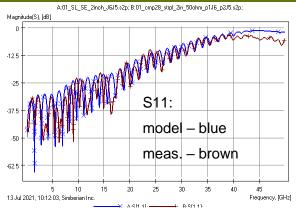
[80, 90)

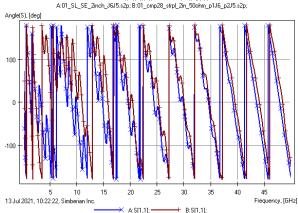
Inconclusive Bad

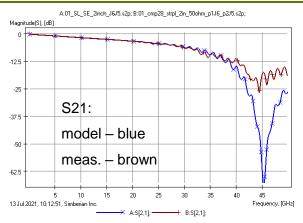
			, v, c		1 12			
NO.		S11			S21		GDM Average	
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
	0.33	0.43	0.59	0.15	0.18	0.26	0.43	Fair
	0.41	0.54	0.76	0.04	0.05	0.07	0.42	Fair
	0.16	0.24	0.33	0.12	0.13	0.19	0.26	Good
	0.25	0.35	0.47	0.09	0.16	0.20	0.34	Good
	0.35	0.47	0.66	0.25	0.27	0.41	0.54	Fair
	0.40	0.49	0.72	0.42	0.40	0.64	0.68	Fair
	0.17	0.28	0.36	0.14	0.14	0.22	0.29	Good
	0.35	0.37	0.56	0.19	0.23	0.33	0.44	Fair
	0.39	0.44	0.65	0.11	0.19	0.23	0.44	Fair
	0.43	0.44	0.70	0.05	0.06	0.09	0.40	Fair
11	0.45	0.51	0.75	0.11	0.15	0.20	0.48	Fair
12	0.44	0.60	0.82	0.03	0.04	0.05	0.44	Fair
13	0.24	0.40	0.52	0.15	0.18	0.26	0.39	Good
	0.31	0.50	0.66	0.11	0.19	0.24	0.45	Fair
15	0.37	0.55	0.73	0.47	0.50	0.75	0.74	Fair-Poor
	0.33	0.45	0.63	0.13	0.21	0.28	0.45	Fair
17	0.29	0.60	0.73	0.13	0.15	0.22	0.48	Fair
	0.32	0.45	0.61	0.14	0.20	0.27	0.44	Fair
	0.35	0.51	0.69	0.14	0.18	0.25	0.47	Fair
	0.50	0.56	0.83	0.60	0.55	0.91	0.87	Poor
21	0.46	0.59	0.83	0.63	0.78	1.13	0.98	Poor
22	0.45	0.61	0.85	0.34	0.69	0.83	0.84	Poor
23	0.43	0.65	0.86	0.34	0.42	0.61	0.73	Fair-Poor

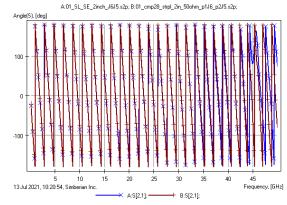
SE	S, 35 (
NO.	SPS [0-100]%
110.	35 GHz
1	92.5639
2	91.8262
3	91.7525
4	92.8552
	91.1739
5 6	90.8311
7	93.0992
8	93.8351
9	91.087
10	93.0776
11	94.7303
12	95.3771
13	93.3182
14	94.1929
15	88.4187
16	94.4118
17	93.596
18	93.969
19	91.9582
20	93.3429
21	93.9318
22	91.4807
23	91.6811

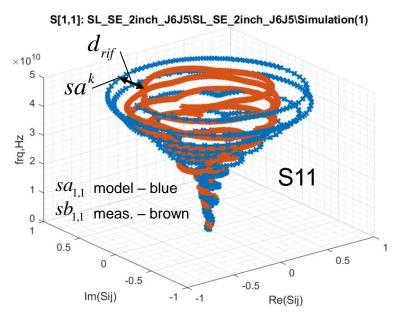

Let's look closer at cases 1, 3, 15, 20...

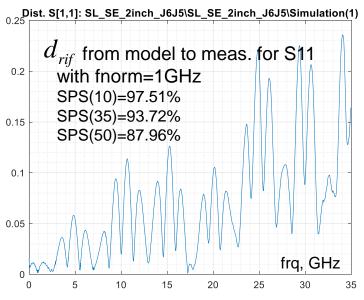



#1 - 2-in Strip – SPS Acceptable

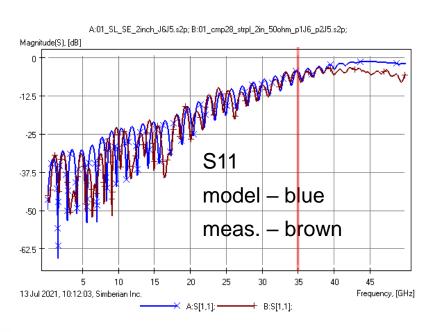

SPS(35)=92.44%

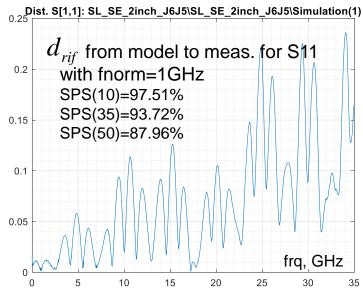

93.7131 98.5223 98.5417 92.4394



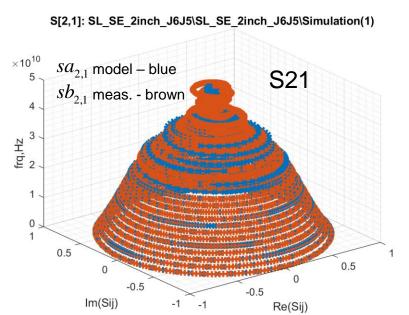


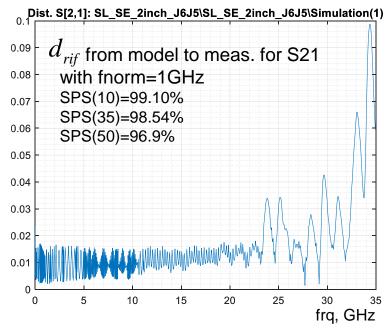
#1 - 2-in Strip - S11 - SPS Acceptable



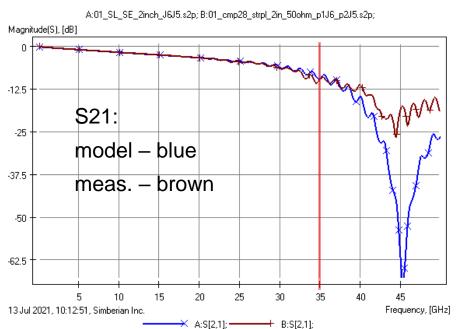


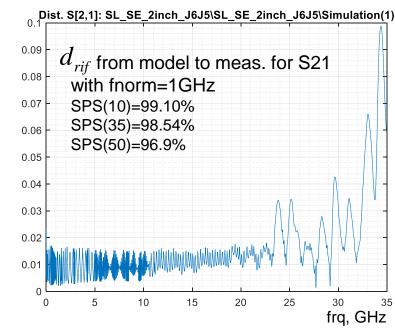
#1 - 2-in Strip - S11 - Fair/Acceptable


NO	S11			S21			GDM Average		
NO.	ADM	FDM	GDM	A DM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative	
1	0.33	0.43	0.59	0.15	0.18	0.26	0.43	Fair	



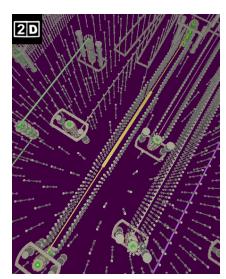
#1 - 2-in Strip - S12 - SPS Acceptable

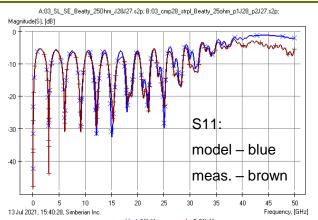


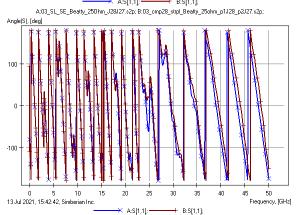


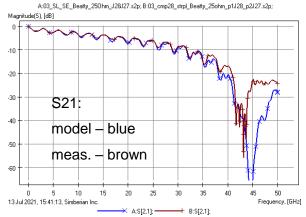
#1 - 2-in Strip - S12 - Good/Acceptable

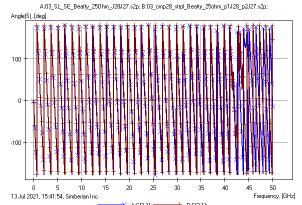
NO	S11			S21			GDM Average		
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative	
1	0.33	0.43	0.59	0.15	0.18	0.26	0.43	Fair	

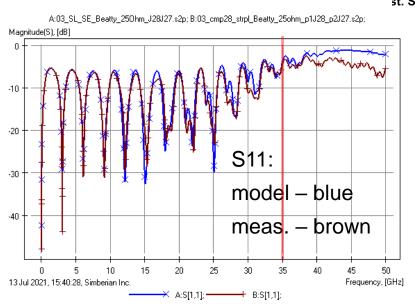


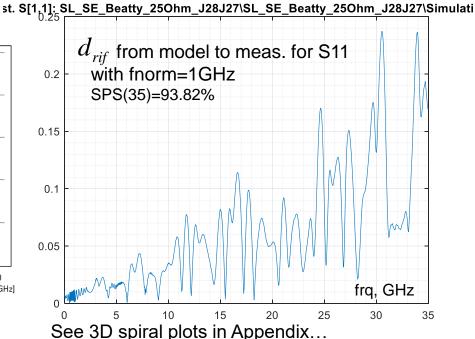



#3 – Strip Beatty – SPS Acceptable


SPS(35)=91.75%


93.8279 96.1705 96.1928 91.7525

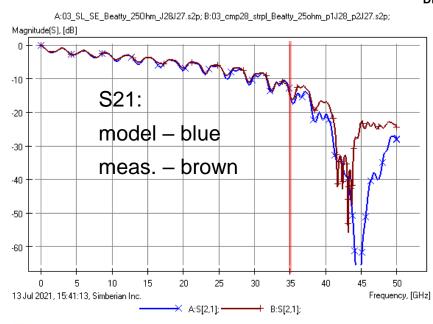


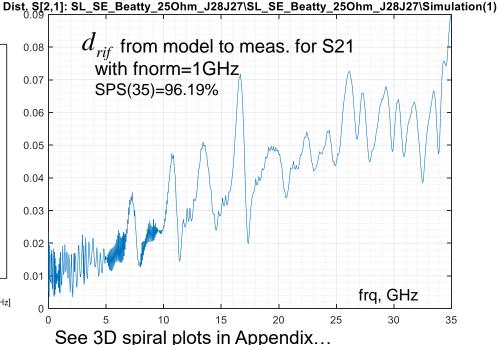

IBIS Summit 2021

8/19/2021

#3 – Strip Beatty - S11 – Good/Acceptable

NO.	S11			S21			GDM Average	
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
3	0.16	0.24	0.33	0.12	0.13	0.19	0.26	Good





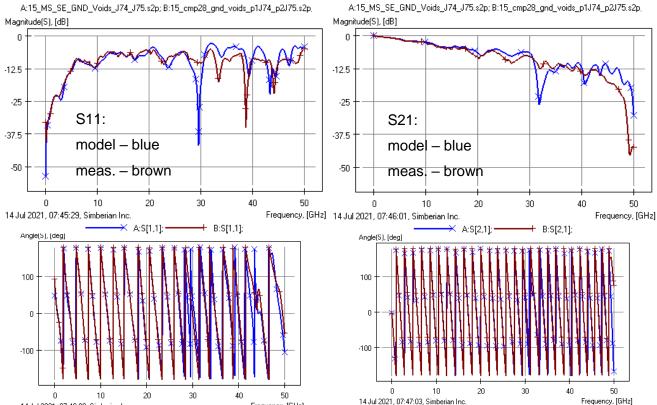
#3 – Strip Beatty – S21 – Very Good/Acceptable

NO	S11			S21			GDM Average	
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
3	0.16	0.24	0.33	0.12	0.13	0.19	0.26	Good

#15 - Voids - SPS Inconclusive

14 Jul 2021, 07:48:09, Simberian Inc.

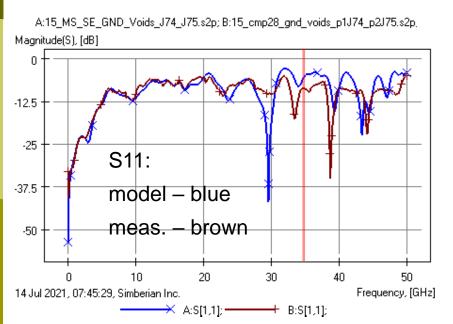
A:S[1,1]; -

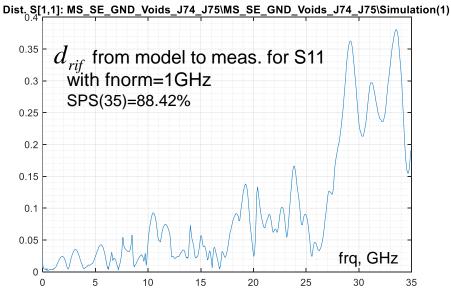

SPS(35)=88.42%

88.4187 92.7228

92.7214

90.6327

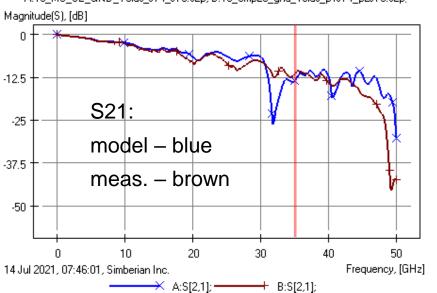

Frequency, [GHz]

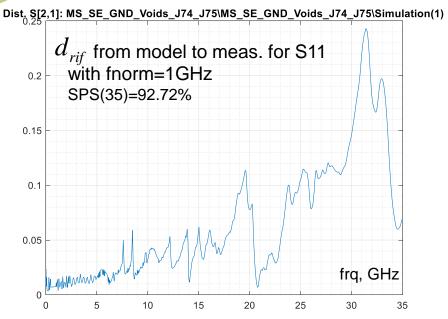

B:S[1,1];

#15 - Voids - S11 - Fair-Poor/Inconclusive

NO.	S11		S21			GDM Average		
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
15	0.37	0.55	0.73	0.47	0.50	0.75	0.74	Fair-Poor

See 3D spiral plots in Appendix...



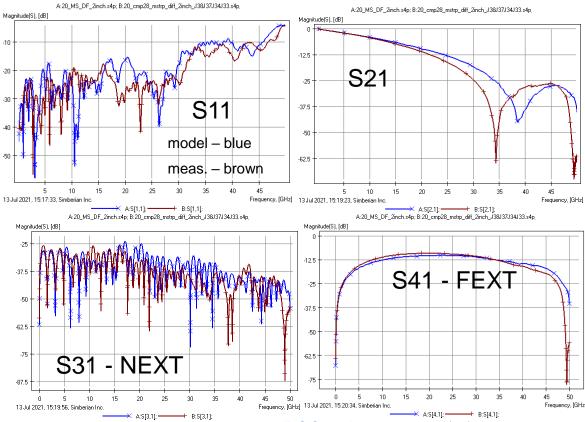

#15 - Voids - S21 - Fair-Poor/Acceptable

FSV

NO.	S11			S21			GDM Average	
	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
15	0.37	0.55	0.73	0.47	0.50	0.75	0.74	Fair-Poor

A:15_MS_SE_GND_Voids_J74_J75.s2p; B:15_cmp28_gnd_voids_p1J74_p2J75.s2p,

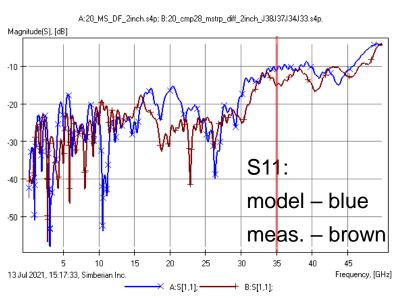
See 3D spiral plots in Appendix...

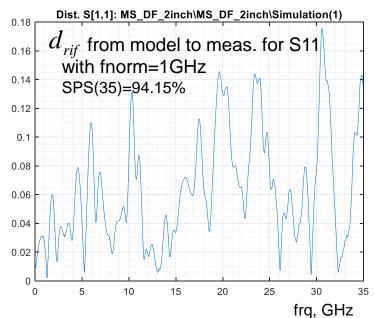


#20 - Diff. 2-in uStrip - SPS Acceptable

Single-Ended SPS(35) = 93.34%

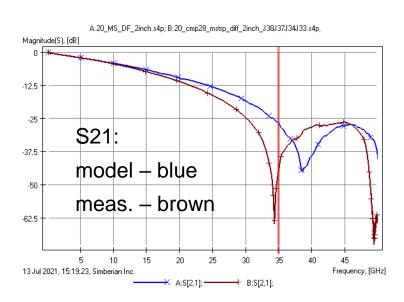
93.6896	96.0340	98.5680	96.8778
96.0421	93.8026	96.5445	98.4246
98.5675	96.5439	93.3429	95.9427
96.8520	98.4240	95.9464	93.4017

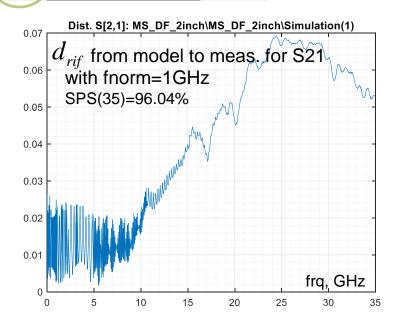




#20 - Diff. 2-in uStrip - S11 - Poor/Acceptable

NO.	S11			S21			GDM Average	
NO.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
20	0.50	0.56	0.83	0.60	0.55	0.91	0.87	Poor

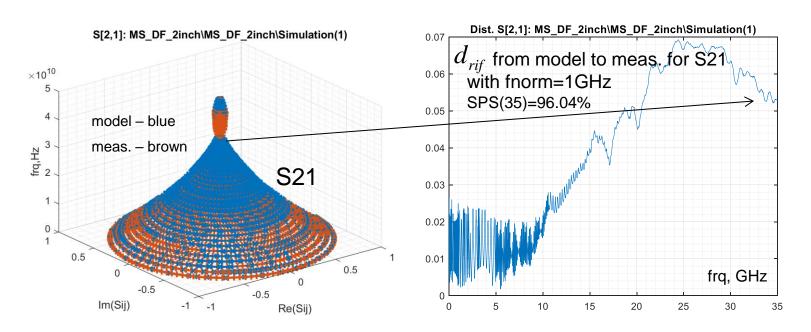

See 3D spiral plots in Appendix...



#20 – Diff. 2-in uStrip – S21 – Poor/Acceptable

FSV

NO.	S11			S21			GDM Average	
	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
20	0.50	0.56	0.83	0.60	0.55	0.91	0.87	Poor



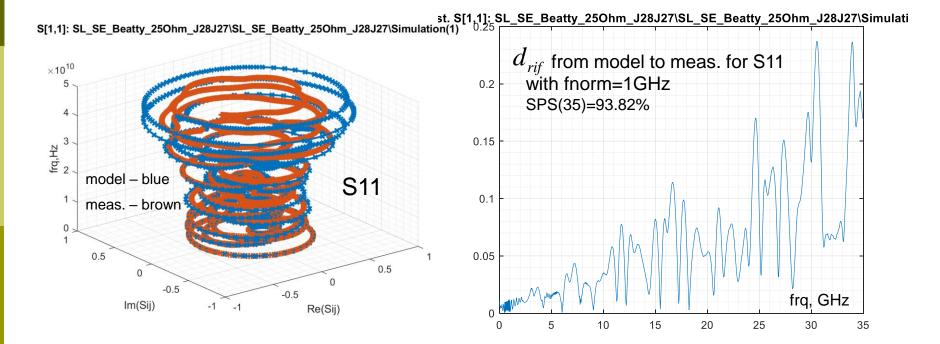
IBIS Summit 2021

SPS is less sensitive to S-parameters with small magnitude

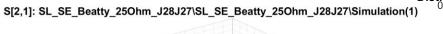
#20 - Diff. 2-in uStrip - S21 - SPS Acceptable

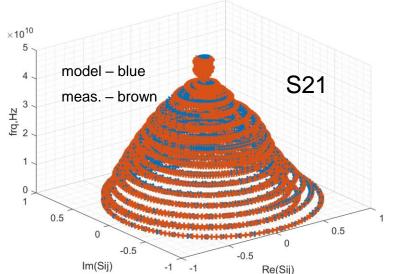
Small magnitude of both S-parameters produces smaller distance

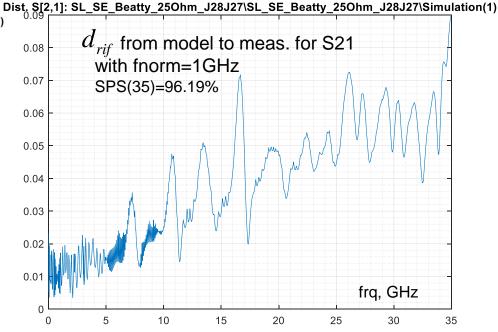
Conclusion


- FSV and SPP metrics are used to compare analysis to measurements for CMP-28 validation platform
- Similar qualitative interpretations are observed on most of the structures
- Differences in SPS and FSV interpretation are observed on S-parameters with very small magnitudes – below 0.1
 - SPS may be not acceptable for comparison of transmission parameters in links with high insertion losses – it needs modification
 - FSV captures the difference quite well it mirrors the human perception
- SPS is much simpler and may be used for preliminary analysis of large datasets or as complementary to FSV

Appendix: Backup Slides

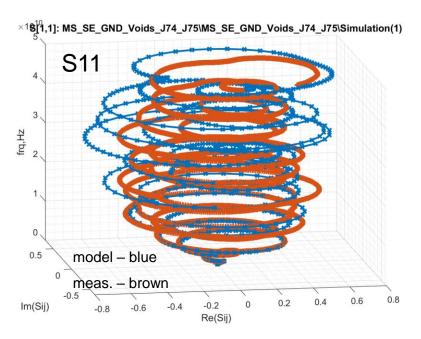

#3 – Strip Beatty – S11 – SPS Acceptable

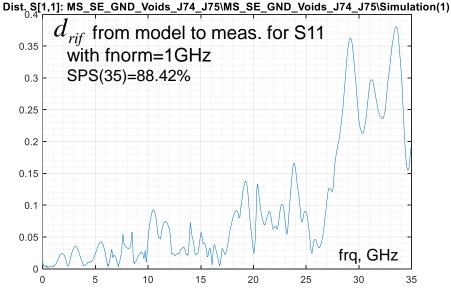


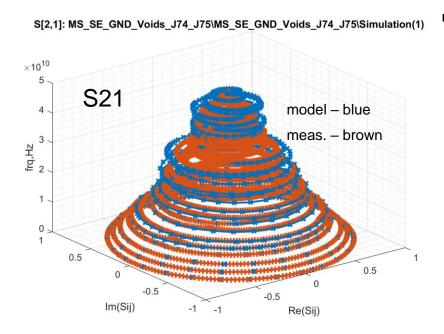


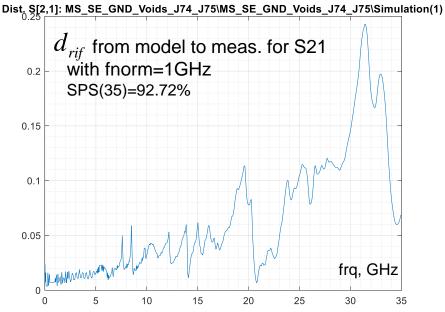
23

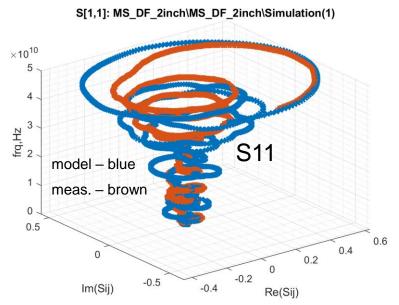
#3 – Strip Beatty – S21 – SPS Acceptable

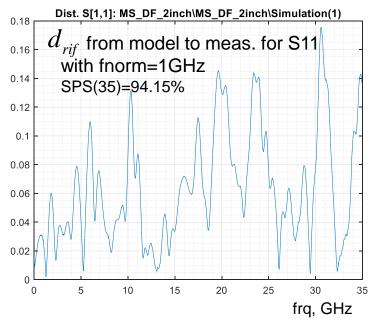


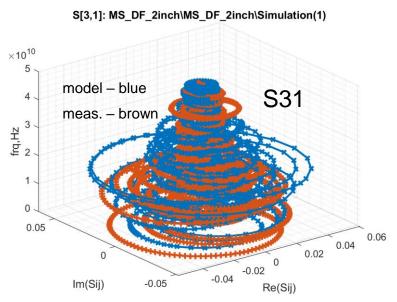


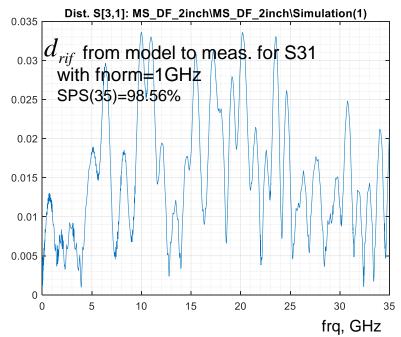

#15 - Voids - S11 - SPS Inconclusive

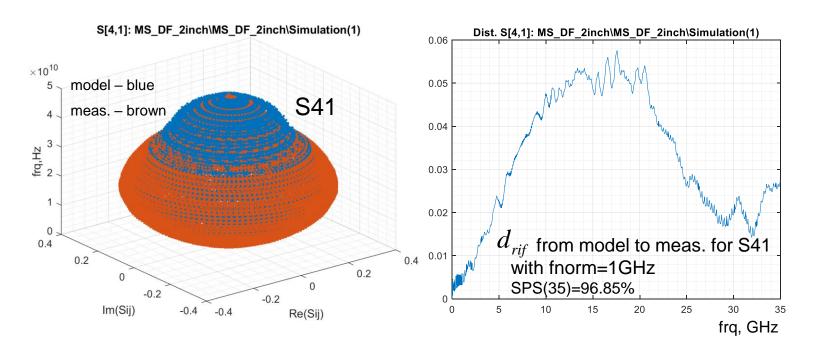



#15 – Voids – S21 – SPS Acceptable




#20 - Diff. 2-in uStrip - S11 - SPS Acceptable




#20 - Diff. 2-in uStrip - S31 - SPS Acceptable

#20 - Diff. 2-in uStrip - S41 - SPS Acceptable

