Using IBIS-AMI in COM Analysis

DesignCon IBIS Summit Santa Clara, California February 2nd, 2018

Wei-hsing Huang, SPISim Wei-hsing.Huang@spisim.com

Agenda:

- Motivation
- Background
- Using AMI in COM Flow
- Results
- Summary
- Q & A

Motivation

• AMI model development :

- Model is not an executable, it needs driver
- Spawn child (simulation) processes is tricky to debug
- Optimization/flow is beyond model developer's control
- Open source link-analysis platforms
 - Includes useful building blocks (e.g. Figure of Merits, BER)
 - Mostly use generic Tx/Rx EQ blocks/algorithms
 - Can be adapted to use IBIS-AMI models
 - Can shorten AMI modeling design cycle
 - E.g. COM ^{(1), (2)} & PyBERT ⁽³⁾

Background 1/3

- COM (Channel operating Margin)
 - Is a IEEE 802.3bj Spec (Annex 93A)
 - Published codes, well documented and maintained
 - Is a simplified version of BER analysis
 - Figure of merit based channel optimization and analysis
 - Jitter, Noise etc are also included

Background 2/3

COM has channel components and conditioning algorithms

Use FOM to find FFE, CTLE settings, then apply DFE for BER

• Single-bit-response based

Background 3/3

- COM use exhaustic search for FFE + CTLE ⁽⁴⁾
 - Generic implementations
 - CTLE is gdc only
 - DFE is not optimized together

1782 for 1783 1784 1785 1786 1787 1788	<pre>ctle_index=1:length(gdc_values) g_dc = gdc_values(ctle_index); kacdc = 10^(g_dc/20); CTLE_fp1 = param.CTLE_fp1(ctle_index); CTLE_fp2 = param.CTLE_fp2(ctle_index); CTLE_fz = param.CTLE_fz(ctle_index); switch param.CTLE_type</pre>	in dB
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1865 1865 1866 1865 1866 1866	<pre>for k_cm2=1:length(cm2_values) cm2=cm2_values(K_cm2); for k_cm1=1:length(cm1_values) cm1=cm1_values(k_cm1); for k_cp1=1:length(cp2_values) cp1=cp1_values(K_cp1); for k_cp2=1:length(cp2_values) cp2=cp2_values(K_cp2); for k_cp3=1:length(cp3_values) cp3=cp3 values(K_cp3):</pre>	alues)* length(cm1_values)*length(cp1_values)*length(gdc_values)*length(cp2_values)*length(cp3_values)*lf_indx))-abs(cm1)-abs(cp1)-abs(cp2)-abs(cp3), cp1, cp2, cp3]] values of c(0), not guaranteed to be supported by all transmitters. min

CTLE

One degree of freedom: G_{DC}

 $H_{CTLE}(f) = f_b \frac{j \cdot f + 0.25 \cdot f_b \, 10^{\frac{G_{DC}}{20}}}{(j \cdot f + 0.25 \cdot f_b) \cdot (j \cdot f + 0.25 \cdot f_b)}$

G_{DC} is DC gain

Use AMI models in COM 1/2⁽⁵⁾

Use AMI model in COM 2/2

Package iteration loop

- Use loadlibrary mechanism
- AMI parameters can be pre-assembled
- Example library loading/calling in COM

mex -setup load('SPISimAMI_WIN64.dll', 'ami.h') libisloaded('SPISimAMI_WIN64') libfunctions('SPISimAMI_WIN64') calllib('SPISimAMI_WIN64','ami_init', htInput, rowSize, numAggr...) unloadlibrary('SPISimAMI_WIN64')

Modified COM flow using AMI_GetWave (Bit-by-bit)

Example Results 1^{(6), (7)}

Replace COM's FFE with self-optimization FFE

User provide unit interval channel pulse response (lone pulse) ht
Colouidate tan weights wit based on locat MSE algorithm

Example Results 1

13 gdc * 24 FFE sweep (red) vs customized FFE (blue)

Example Results 2

13 gdc * 24 FFE sweep (red) vs customized FFE (blue)

Summary:

- AMI model can be used in COM analysis:
 - COM is a great open platform for link analysis/AMI development
 - Replaces multi-level CTLE and FFE loop with AMI call
 - Can pull-in DFE for co-optimization

• Considerations:

- Original COM flow supports AMI_Init type LTI only
 - AMI_GetWave based flow needs SBR ⊗ BitStream first
- AMI parser is not necessarily needed
 - Parameters can be pre-assembed as strings
- Can be used for back-channel analysis development

References:

- 1. IEEE Std 802.3bj-2014, Specification, Annex 93A
- 2. Channel Operating Margin (COM), Richard Mellitz, DesignCon 2013
- 3. **PyBERT:** https://pypi.python.org/pypi/PyBERT
- 4. COM tools: http://www.ieee802.org/3/bj/public/tools.html
- 5. IBIS V6.1 Spec. Section 10 http://ibis.org/ver6.1/
- 6. New SI Techniques for Large System Performance Tuning, Donald Telian, DesignCon 2016
- 7. Sam Palermo, ECEN 720, High-Speed Link Circuits & Systems, Texas A&M

Q & A

