
©2019 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject

to change without notice. All information is provided on an “AS IS” basis without warranties of any kind.

Statements regarding products, including regarding their features, availability, functionality, or

compatibility, are provided for informational purposes only and do not modify the warranty, if any,

applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron

trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their

respective owners.

Justin Butterfield

DesignCon 2019 IBIS Summit

Santa Clara, California

February 1, 2019

Modeling Forwarded Clock
Interfaces with IBIS-AMI

Micron Confidential 1

Agenda

2

 Upcoming DRAM interfaces

 Forwarded clock architecture

 Currently proposed modeling approaches

 DRAM Rx circuit

 Correlated jitter

 Sinusoidal jitter example

 Using existing IBIS-AMI jitter parameters

 Summary and future discussion topics

Upcoming DRAM Interfaces

3

 Expected to implement equalization
− Both at the DRAM and Controller side

 DDR5

 GDDR6

 Other next-generation DDR

− Likely include one or more EQ capabilities:

 FFE, CTLE, DFE, etc.

 New simulation techniques required
− Statistical analysis to predict behavior over millions of bits

− IBIS-AMI can be used to model the equalization

 Forwarded clock problem
− Traditional IBIS-AMI applications include clock data recovery (CDR)

− DDR interfaces will continue to use a forwarded clock architecture

− IBIS-AMI function APIs do not support inputting a clock

Forwarded Clock Architecture

4

 Forwarded Clock (Source Synchronous System)
− DQ is clocked by DQS at DRAM Rx

− DQS driven parallel to DQ

 Challenges for IBIS-AMI
− IBIS-AMI assumes a CDR

− DQ and DQS are independent paths

 Each will have different jitter characteristics

 Jitter from the Tx source (Rj, Dj, Sj, DCD)

 Jitter at the Rx (Rj, Dj, Sj, DCD)

 Intersymbol interference (ISI)

 Crosstalk

− Need careful accounting of jitter

 Avoid double counting

 Consider jitter budget for Controller and DRAM

DQn DQn

DQS_t

DQS_c DQS_c

DQS_t

Tx Rx Channel

Currently Proposed Modeling Approaches

5

 1. CDR as modeling construct
− Concept:

 Use existing model flows with a
CDR built into the executable

 Determines DFE decision point

 Rely on existing Rx /
Rx_Clock_Recovery jitter
parameters

− Pros:

 Simple

 Use existing flows

 Rx model can be self contained

− Cons:

 Not a physical representation

 Jitter modeling must make
assumptions

 2. clock_times as an input vector
− Concept:

 clock_times vector as input clock

 Could use a new BIRD to use
clock_times vector as input

 Jitter modeling could be handled by
the executable

− Pros:

 More physical representation

 Potentially more accurate jitter
modeling

− Cons:

 More complex

 Requires new flows

 clock_times from a source outside the
executable

 Need to handle the phase training

DRAM Rx Circuit

6

 DRAM Rx may include
− VREFDQ, Analog Gain Stage, CTLE, DFE, etc.

− Slicer clocked with DQS

 DQS Tree
− DQS clock must be driven to each DQ in the byte

− Significant DQS delay from pad to Slicer at each DQ

 Due to physical length

 On the order of 1ns (covers multiple UI)

 Controller expected to train the phase alignment at Slicer

DQ0

DQ1

DQ2

DQ3

DQS_t

DQS_c

DQ4

DQ5

DQ6

DQ7

DQS_t

DQS_c

DQ

VREFDQ
DFE

Rx_OUT

Slicer

DQS Tree

Tn
T2 …

T1

Shift Register
T1

T2

…

Tn

Correlated Jitter

7

 Theory:
− Should correlated jitter on both DQ and DQS cancel out?

− Due to DQS tree time delay (Td_dqs_tree), this is not always the case

− Jitter cancelation only below the jitter cutoff frequency (Jitter_cutoff_freq)

 Td_dqs_tree ~= 1ns

 Jitter_cutoff_freq << 1 / Td_dqs_tree

 Jitter_cutoff_freq ~= 100MHz

DQS_t

DQS_c

DQ

VREFDQ
DFE

Rx_OUT

Slicer

DQS Tree

Tn
T2 …

T1

Shift Register
T1

T2

…

Tn

Td_dqs_tree

Sinusoidal Jitter Example

8

 Case 1: “Low Frequency SJ”
− SJ frequency = 95MHz

− Td_dqs_tree ~= 1ns

− ~+/-4ps correlated jitter input at DQ and DQS pads

− Result is partial jitter cancelation

 ~+/-2ps effective jitter at the Slicer

Effective Jitter Histogram at Slicer

DQS_t

DQS_c

DQ

VREFDQ
DFE

Rx_OUT

Slicer

DQS Tree

Tn
T2 …

T1

Shift Register
T1

T2

…

Tn

Input Jitter Histograms

Sinusoidal Jitter Example

9

 Case 2: “High Frequency SJ”
− SJ frequency = 475MHz

− Td_dqs_tree ~= 1ns

− ~+/-4ps correlated jitter input at DQ and DQS pads

− Result is additive jitter not cancelation

 ~+/-7ps effective jitter at the Slicer

Effective Jitter Histogram at Slicer

DQS_t

DQS_c

DQ

VREFDQ
DFE

Rx_OUT

Slicer

DQS Tree

Tn
T2 …

T1

Shift Register
T1

T2

…

Tn

Input Jitter Histograms

Using Existing IBIS-AMI Jitter Parameters

10

 DQ / DQS Jitter that
becomes uncorrelated at the
Slicer

− DQS Jitter modeled with
Rx_Clock_Recovery_Sj

− Jitter cut off frequency of the
DRAM Rx needs to be known

No Jitter Tx_Sj=4ps
Tx_Sj=4ps +

Rx_Clock_Recovery_Sj=4ps

No Jitter

Tx_Sj=4ps

Tx_Sj=4ps +

Rx_Clock_Recovery_Sj=4ps

 2-Rank DDR5 system, 4Gb/s, +/-4ps SJ

DJ PDF

Summary and Future Discussion

11

 Summary
− Challenges exist to accurately model jitter in forwarded clock IBIS-AMI models

 Due to separate paths for DQ and DQS

− Two modeling approaches under consideration

 CDR + Existing jitter parameters

 clock_times as an input vector

− Jitter that appears correlated at DQ / DQS pads can become uncorrelated at the Slicer

 Depends on the frequency of the jitter and electrical length of the DQS tree

 Future Discussion Topics:
− What is the frequency content of the system jitter?

 Is it low enough to where this is a don’t care?

− Would using existing jitter parameters be accurate enough?

 Can inputting clock_times be a better approach?

 Other possible approaches? Possible two step analysis approach?

Micron Confidential 12

