COM & IBIS-AMI: How They Relate & Where They Diverge

Hsinho Wu, (Intel) Masashi Shimanouchi, (Intel) Mike Peng Li, (Intel)

DesignCon IBIS Summit Santa Clara, California

Contents

- COM Overview
- IBIS-AMI Overview
- COM vs. IBIS-AMI
- Observations and Conclusions

Channel Operating Margin (COM)

• COM is a FOM defined as

$$COM = 20 \times log_{10}(\frac{A_s}{A_{ni}})$$

where A_s is available signal strength after channel, device characteristics, and equalizations, A_{ni} is the combination of uncompensated channel effects (e.g. ISI), intrinsic jitter/noise, and external jitter/noise (e.g. crosstalk)

- COM has been adopted various standards since ~2014 for >25Gb/s NRZ/PAM4 links
 - IEEE 802.3
 - OIF CEI
 - JEDEC 204C
- COM has been widely used for channel and Tx/Rx compliance tests

COM Methodology

Figure 93A-1, IEEE 802.3 Annex 93A

IBIS-AMI

- Input/Output Buffer Information Specification (IBIS) Algorithmic Modeling Interface (AMI)
- Standards for I/O buffers and transceivers/PHYs behavior model, which
 - is more simulation time efficient (than SPICE simulations)
 - Allow simulation of millions of bits for low BER (bit error rate) performance estimation
 - protects IP's and allow simulations between devices from different vendors
 - is governed by IBIS Open Forum
- What's inside an IBIS-AMI model
 - Analog model: drive strength/amplitude, rise/fall time, impedance
 - Algorithmic model: Equalizer (CTLE, FFE, DFE), clock data recovery (CDR in receiver), jitter/noise

IBIS-AMI Simulation and Analysis Flow

COM vs. IBIS-AMI: Why we want to compare them?

- Similarity
 - Both are link simulations: Stimulus => Tx => Channel => Rx w/ jitter/noise
- Why the comparison?
 - Can I use COM to simulate My link?
 - COM is free and from standards
 - But I also knew IBIS-AMI should be more accurate
 - What do the COM values mean to my link?

First-Order Differences between COM and IBIS-AMI

- Use of reference transmitter and receiver and packages
- Jitter and noise definition and injection locations
- Equalization tuning methodology
- Link margin determination methodology
- Handling of nonlinear behaviors

Link Configuration and Comparison Methodology

- Configure a COM simulation that approximates a 50GBASE-KR/200GBASE-KR4 (802.3cd) link
- Build and re-configure a general purpose IBIS-AMI model with Tx/Rx characteristics that approximates 50GBASE-KR/200GBASE-KR4 (802.3cd) specifications
 - Tx: rise/fall time, impedance (Z_d, C_d) , Tx EQ
 - Rx: Impedance $(Z_{d'}, C_d)$, AFE, EQ (CTLE, DFE) with LMS-based adaptation engine
 - Package: using COM method $(C_d + T line + C_p)$ and use it as part of the channel
- Inject COM jitter/noise in IBIS-AMI framework
 - DJ (A_{DD}), RJ (Sigma_{RJ}), SNR_{TX}, Rx Input noise (η_0)
- Tuning and improve the simulation settings and simulation platform to emulate COM methodology
- Does not include crosstalk in this paper
 - To simplify the comparison tasks

Test Channel Characteristics

Channel Viewer: [1] FR: Sdd21

COM Configuration and Results

Table 93A-1 parameters				Receiver testing			Table 93A–3 para		
Parameter	Setting	Units	Information	RX_CALIBRATION	0	logical	Parameter	Setting	Units
f_b	26.5625	GBd		Sigma BBN step	5.00E-03	V	package_tl_gamma0_a1_a2	[0 1.734e-3 1.455e-4]	
f_min	0.05	GHz		IDEAL_TX_TERM	0	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		T_r	0.012	ns	package_Z_c	90	Ohm (tdr sel)
C_d	[1.8e-4 1.8e-4]	nF	[TX RX]	FORCE_TR	1	logical			
z_p select	[2]		[test cases to run]				Table 92–12 parameters		
z_p (TX)	[12 30]	mm	[test cases]	Operational control		Parameter	Setting		
z_p (NEXT)	[12 12]	mm	[test cases]	COM Pass threshold	3	dB	board_tl_gamma0_a1_a2	[0 4.114e-4 2.547e-4]	
z_p (FEXT)	[12 30]	mm	[test cases]	Include PCB	0	Value	board_tl_tau	6.191E-03	ns/mm
z_p (RX)	[12 30]	mm	[test cases]				board_Z_c	110	Ohm
C_p	[1.1e-4 1.1e-4]	nF	[TX RX]	g_DC2	[-6:1:0]		z_bp (TX)	151	Mm
R_0	50	Ohm		f_LF	0.6640625	GHz	z_bp (NEXT)	72	Mm
R_d	[55 55]	Ohm	[TX RX] or selected				z_bp (FEXT)	72	Mm
f_r	0.75	*fb					z_bp (RX)	151	Mm
c(0)	0.6		min						
c(-1)	[-0.25:0.05:0]		[min:step:max]						
c(-2)	[0:0.025:0.1]		[min:step:max]						
c(1)	[-0.25:0.05:0]		[min:step:max]						
g_DC	[-20:1:0]	dB	[min:step:max]						
f_z	10.625	GHz							
f_p1	10.625	GHz							
f_p2	53.125	GHz							
A_v	0.45	V	tdr selected						
A_fe	0.45	V	tdr selected						
A_ne	0.63	V	tdr selected						
L	4								
м	32								
N_b	12	UI							
b_max(1)	0.7								
b_max(2N_b)	0.2								
sigma_RJ	0.01	UI							
A_DD	0.02	UI							
eta_0	1.64E-08	V^2/GHz							
SNR_TX	32.5	dB	tdr selected						
R_LM	0.95								
DER_0	1.00E-04								

- TX FIR: [0 0 0.0250 -0.2000 0.7750 0]
- RX CTLE: $g_{DC} = -13$ and $g_{DC2} = -5$
- RX DFE: [0.6741 0.1704 0.0936 0.0511 0.0351 0.0228 0.0105 0.0059 0.0100 -0.0251 0.0121 0.0026] (in ratio with respect to CTLE output's main cursor amplitude)
- VEC (Vertical Eye Closure): 8.07dB
- BER: 10⁻⁴
- COM: 4.36dB

IBIS-AMI Simulation Configurations

• Topology

• Tx/Rx Impedance and Packages

- Tx 20-80% rise/fall time:12ps
- Tx/Rx Impedance and Return Loss
 - R = 500hms
 - Capacitive loads (*C_comp*): To be included in the package model
- Package (contains both die impedance and package models)
 - Die Capacitance (Cd): 180fF
 - 30mm T-line
 - PCB Capacitance (Cp): 110fF

IBIS-AMI Simulation Configurations (cont.)

• Jitter/Noise

C	ОМ	IBIS	-AMI	Note		
Jitter/Noise Name	Value	Jitter/Noise Name	Value			
A _{DD}	0.02 UI _{peak}	Tx_DCD	0.02 UI _{peak}	Distribution: Dual-Dirac		
$\sigma_{_{RJ}}$	0.01 UI _{RMS}	Tx_RJ	0.01 UI _{RMS}	Distribution: Gaussian		
SNR _{7X}	32.5 dB*	Tx_RN (Proprietary ^{*2})	32. dB or 10.67 mV _{RMS} @TX die ^{*3}	Distribution: AWGN *: COM: Constant SNR throughout the link * ² : Supported in the Advanced Link Analyzer * ³ : Tx_RN value is calculated with Tx differential output amplitude=900mV		
ηο	1.64*10 ⁻⁸ V ² /GHz	Rx_InpN (Proprietary ^{*4})	1.64*10 ⁻⁸ V ² /GHz	*4: Supported in the Advanced Link Analyzer		

- TX Noise (SNR_{TX})
 - COM does not specify characteristics of Tx Noise, e.g. BW, distribution, ... etc.
 - COM assume SNR_{TX} is constant throughout the link and inside device
 - IBIS-AMI does not support Tx noise
 - Modelled as *Tx_RN* in our simulation platform
 - Options: Amplitude, BW, distribution, and constant SNR enforcement option
- Receiver Input Noise (η_0)
 - IBIS-AMI does not support Rx Input Noise η_0
 - Supported in our simulation platform as Rx_InpN

IBIS-AMI Simulation: FOM for COM comparison

• VEC (Vertical Eye Closure)

 $VEC = 20 \log_{10} \left(\max\left(\frac{AV_{upp}}{V_{upp}}, \frac{AV_{mid}}{V_{mid}}, \frac{AV_{low}}{V_{low}}\right) \right) (dB)$

- Defined in IEEE 802.3 Annex 120E
- In this paper, we measure VEC at BER 10⁻⁴
- VEOR (Vertical Eye Opening Ratio)

 $VEOR = -20log_{10}(\frac{v-1}{v})$ where $v = 10^{\frac{VEC}{20}}$

• Similar to COM and will be used as the FOM in IBIS-AMI simulation result assessments

 V_{upp} is the 10^{-4} upper eye height V_{mid} is the 10^{-4} middle eye height V_{low} is the 10^{-4} lower eye height AV_{upp} is the amplitude of the upper eye (AV_{upp}) , equal to $VM_3 - VM_2$ AV_{mid} is the amplitude of the middle eye (AV_{mid}) ,

equal to $VM_2 - VM_1$ AV_{low} is the amplitude of the lower eye (AV_{low}),

equal to $VM_1 - VM_0$ VM_3 is the mean of the differential equalized signal

above VC_{upp} at CDR sampling clock

 VM_2 is the mean of the differential equalized signal between VC_{upp} and VC_{mid} at CDR sampling clock VM_1 is the mean of the differential equalized signal between VC_{mid} and VC_{low} at CDR sampling clock VM_0 is the mean of the differential equalized signal below VC_{low} at CDR sampling clock

 VC_{upp} is the voltage center of the upper eye VC_{mid} is the voltage center of the middle eye

 VC_{low} is the voltage center of the lower eye

Statistical Mode

VEC = 5.61dB VEOR = 6.45dB (vs 4.36dB COM)

- Similarity between IBIS-AMI statistical mode and COM
 - LTI-based simulation
 - No jitter interactions
- Observations
 - IBIS-AMI result is ~2dB better than COM
 - Cause: Residual TX noise at RX slicer is seen to be much smaller than COM's
- Discussions
 - Should TX noise to be shaped and filtered by device and channel?
 - What is TX noise's characteristics?
 - Is constant *SNR_{TX}* realistic?

Statistical Simulation Mode w/ Constant SNR_{TX}

VEC = 7.82dB VEOR = 4.53dB (vs 4.36dB COM)

- Observation
 - Good match between IBIS-AMI and COM
- Discussions
 - Is constant SNR_{TX} realistic?
 - True when Tx noise is highly nonlinear and/or with low BW
 - If your Tx's output noise is AWGN and/or w/ better SNR, COM value will be too pessimistic
 - Jitter/Noise Handling
 - COM's Jitter-to-Noise conversion (IEEE 802.3 Eq. 93A-27)
 - IBIS-AMI jitter-to-noise conversion: 2-D convolution
 - CDR Effect in COM
 - No explicit CDR jitter/noise
 - Nonlinearity
 - COM includes TX level mismatch (RLM) adjustment
 - IBIS-AMI stat. mode: Platform dependent
 - EQ adaptation
 - COM vs IBIS-AMI: LMS-based algorithm

Waveform Simulation Mode w/ Constant SNR_{TX}

VEC = 9.82dB VEOR = 3.39dB (vs 4.36dB COM)

- Observations
 - IBIS-AMI's waveform simulation mode includes
 - Nonlinear effects
 - CDR
 - Jitter/noise amplification
 - PAM4 Level mismatch (R_{LM})
 - Link adaptation
 - Resulting worse VEOR by ~1.14dB
- Discussions
 - Nonlinearity has shown to become more dominate in higher data rates and PAM4 links
 - If your Tx/Rx have more nonlinear characteristics, COM value can be too optimistic
 - Depending on jitter/noise characteristics, COM value can be either optimistic or pessimistic

IBIS-AMI Simulation #4 and #5

Waveform Simulation w/o jitter/noise amplification and w/o Const. SNR_{TX}

VEC = 8.67dB VEOR = 3.99dB (vs 4.36dB COM)

VEC = 7.14dB VEOR = 5.02dB (vs 4.36dB COM)

w/o Jitter/Noise Amplification

- Jitter/Noises are post-processed at the Rx Slicer output
- Jitter/noise also affect EQ adaptation
- Improved VEOR by ~0.6dB

w/o Constant SNR_{TX}

- Similar to statistical simulation result, Tx noise was shaped by channel and device characteristics
- Improve VEOR by ~1.0dB

Waveform Simulation Mode w/ realistic Tx/Rx characteristics

• Link and Device Configurations

- Transmitter
 - Output amplitude: *1V*_{peak-peak-differential}
 - Termination
 - *R_d* = 500hms
 - $C_d = 0.13 pF$
 - PAM4 Level Mismatch
 - $R_{LM} = 0.95$
 - Jitter and Noise
 - BUJ = 0.04UI_{peak-peak} with uniform distribution
 - DCD = 0.019UI_{peak-peak} with dual-Dirac distribution
 - RJ = 0.01UI_{RMS} with Gaussian distribution
 - RN = $2mV_{RMS}$

Receiver

- Termination
 - $R_d = 50 ohms$
 - $C_d = 0.13 pF$
- CTLE/VGA/DFE
 - CTLE AC gain: 0 to 16dB
 - VGA Gain: 0 to 20dB
 - 12-tap DFE
- Jitter and Noise
 - RJ = 0.015UI_{RMS}
 - RN = $4.6mV_{RMS}$
 - Input referred noise = $1.3 \times 10^{-8} V^2/GHz$
- Slicer Sensitivity
 - 30mV_{peak-peak}

Waveform Simulation Mode w/ realistic Tx/Rx characteristics (cont.)

Eye Opening Width (EW) = 0.15UI Eye Opening Height (EH) = 32.5 mV VEC = 6.05dB VEOR = 5.79dB

Observations

- Both Tx and Rx are better than reference devices in COM. However
 - Both Tx and Rx have more and detailed jitter/noise components: Tx BUJ/DCD/RJ/RN and Rx RJ/RN
 - Eye opening height and width need to meet Rx slicer sensitivity for correct symbol recovery
 - VEC and VEOR are not critical in determining link pass/fail
- The link was shown to have sufficient link margins at 53.625 Gb/s

COM vs. IBIS-AMI Simulation Results Summary

	COM (dB)	VEOR (dB)	VEC (dB)	Eye Height (mV)	Eye Width (UI)
СОМ	4.36	n/a	8.07	n/a	n/a
Statistical w/ Constant SNR	n/a	4.53	7.82	2.66	0.14
Statistical w/o Constant SNR	n/a	6.45	5.61	3.57	0.17
Waveform w/ Constant SNR	n/a	3.39	9.82	1.71	0.12
Waveform w/ Constant SNR & Jitter/Noise post-processing	n/a	3.99	8.67	2.32	0.14
Waveform w/o Constant SNR	n/a	5.02	7.14	2.65	0.16
Waveform w/o Constant SNR w/ realistic device characteristics	n/a	5.13	7.01	32.67	0.15

COM vs IBIS-AMI Summary

Note: 1: k is TX EQ's pre-top length and m is post-top length. 2: Cd represents device die and die-package capacitance in COM. 3: COM includes a static main cursor phase picker which resembles a CDR.

Conclusions

- By carefully configuring IBIS-AMI models and simulations, we are able to replicate COM results in IBIS-AMI simulation environment
- COM result can be approximated by running IBIS-AMI in statistical mode and measuring VEOR value
- Using COM to estimate actual link performance is difficult and unrealistic, because:
 - COM uses reference device models which differ from actual device
 - COM pass threshold is highly abstract and hard to match to exact link and device characteristics
- COM's abstract nature, however, is shown to be a good vehicle for channel compliance and specification setting
 - i.e. Passing COM usually leads to working links
- Should use IBIS-AMI waveform simulation mode to assess accurate link margins

Next Step

- Investigate ways to improve COM in the following areas
 - Tx noise characteristics and SNR_{TX} definition
 - Jitter/noise amplification
 - COM pass threshold
- To include in future COM vs. IBIS-AMI studies
 - Crosstalk
 - Voltage and timing BER bathtub curves