Gap in IBIS for sampling with statistical mode AMI models

- Todd Bermensolo (Keysight Technologies),
- Hansel Dsilva (Achronix Semiconductor Corporation) and
- Michael Mirmak

DesignCon IBIS Summit, Santa Clara, California January 31st, 2020

\bigcirc

Acknowledgements

Special thanks to the following:

- <u>Richard Mellitz</u> for discussions on the COM tool settings.
- <u>Adam Gregory</u> for discussions on the IBIS-AMI flow.
- <u>David Banas</u> for discussions on PyBert flow.
- <u>Yu-Chun Lu</u> for sharing details on the modified Mueller-Muller phase detector.
- <u>Ambrish Varma and Ken Willis</u> for analysis contributions and prompt responses.
- <u>Barry Katz, Eric Brock and Steve Silva</u> for analysis contributions and deep dive discussions during debugging.

\bigcirc

Presentation Overview

Background on Problem Statement

Results

Call to Action

Resolution

Backup

How IBIS-AMI Statistical Generates Eye Diagrams

How Industry Methods Create Eye Diagrams

- https://www.sciencedirect.com/topics/computer-science/channel-impulse-response
- <u>https://www.semanticscholar.org/paper/Channel-Operating-Margin-(COM)%3A-</u> Evolution-of-for-25-Mellitz-Corp/7e9cb8b162fe93a131d37fa1408fb56d9e5b05f8

AMI Modeler's Control Over Sampling

- For AMI_GetWave simulation, the model developer can use clock_times to control where Rx output data is sampled.
- For AMI_Init simulation, there is no similar sampling point control.
- <u>https://www.keysight.com/us/en/assets/7018-03143/application-notes/5990-9111.pdf</u>

What Do We Mean by Sampling?

 Waveform may be somewhat continuous in time, but some things are applied at discrete sample points

- DFE (decision-feedback equalization) slicer point.
- Voltage margin.
- Timing margin.

Examples of Types of Statistical Sampling:

- 1. Peak of pulse response align the sampling clock as the **<u>peak</u>** of the pulse.
- 2. Mueller-Muller align the sampling clock so that precursor ISI equals to post-cursor ISI.
- 3. Modified Mueller-Muller modified version of the Mueller-Muller PD where the impact of first pre-cursor (pre-1) is removed.
- 4. Hula hoop algorithm align the sampling clock based on half way between the transition times for a 010 data pattern in isolation.

Do We Really Need Sampling Info from AMI_Init?

- <u>Experiment 1</u>: Statistical BER contour in different EDA tools.
- <u>Experiment 2</u>: Importance of sampling position. *Peak-of-pulse Phase vs. Mueller-Muller Phase Detectors (PDs)*
- <u>Experiment 3</u>: Problem with timing margin. EDA tools must "guess" the sampling in statistical mode given the DFE is applied in the IBIS-AMI model

1. IBIS-AMI Simulation Setup

- The idea is to use a developed IBIS-AMI model which <u>bypasses the impulse matrix from the EDA tool</u> with that from a .csv.
- In this way, we set the <u>same input</u> in studying the statistical eye in different EDA tools.

- The idea is to use a developed IBIS-AMI model which <u>bypasses the impulse matrix from the EDA tool</u> with that from a .csv.
- In this way, we set the <u>same input</u> in studying the statistical eye in different EDA tools.

2. IBIS-AMI Models Used

A. <u>TX IBIS-AMI</u>

- tx_read_ir.ibs
- tx_read_ir.ami

Init_Returns_Impulse= True; GetWave_Exists= False

read_ir= 1 (yes) and 0 (no); read_ir_filename= 'C:\ir.csv'

• tx_read_ir_x64.dll

B. <u>RX IBIS-AMI</u>

- rx_pass_through.ibs
- rx_pass_through.ami

Init_Returns_Impulse= True; GetWave_Exists= False

➤ Gain= 1

• rx_pass_through_x64.dll

- 3. 1e-5 BER eye contour using statistical IBIS-AMI flow
- 4. Samples per UI = 32
- 5. Channel is an <u>.s4p</u> a dummy S-parameter, given an <u>equalized</u> impulse matrix will be brought in through a .csv at the TX
- 6. <u>Equalized impulse_matrix.csv</u> generated using the COM tool v2.76

4. Channel Response and Equalization

• -28.53 dB @ 16 GHz.

	А	в	с	D	E F	G	н		L	к	L
1		Table 93A-1 para	meters			I/O control		Π		5	
2	Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	11	Parameter	Setting	Units
3	f_b	32	GBd		DISPLAY_WINDOW	1	logical	F	oackage_tl_gamma0_a1_a2	[0 0.002 0.0003]	
4	f_min	0.05	GHz		CSV_REPORT	1	logical	1 [package_tl_tau	6.141E-03	ns/mm
5	Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL	1_PK_KR_{date	e	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
6	C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical		benart	si_3ck_01_0119 & mellitz_3	ck_01_0119
7	L_s	[0 0]	nH	[TX RX]	Port Order	[1324]				Table 92–12 parameters	5
8	C_b	[0 0]	nF	[TX RX]	RUNTAG	KR_eval_			Parameter	Setting	
9	z_p select	[2]		[test cases to run]	COM_CONTRIBUTION	0	logical	1 [board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
10	z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]	(Operational		1 [board_tl_tau	5.790E-03	ns/mm
11	z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	1 [board_Z_c	100	Ohm
12	z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	10.5	dB		z_bp (TX)	110.3	mm
13	z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	1.00E-05			z_bp (NEXT)	110.3	mm
14	C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	T_r	6.16E-03	ns		z_bp (FEXT)	110.3	mm
15	R_0	50	Ohm		FORCE_TR	1	logical		z_bp (RX)	110.3	mm
16	R_d	[50 50]	Ohm	[TX RX]					C_0	[0.29e-4]	nF
17	A_v	0.415	V		TDR a	and ERL options			C_1 [0.19e-4]		nF
18	A_fe	0.415	V		TDR	1	logical		Include PCB	0	logical
19	A_ne	0.608	V		ERL	1	logical				
20	L	2			ERL_ONLY	0	logical		Floating Tap Control		
21	М	32			TR_TDR	0.01	ns		N_bg 0		0 1 2 or 3 groups
22		filter and E	q		N	3000			N_bf 0 taps per group		
23	f_r	0.75	*fb		beta_x	2.3407E+09			N_f 0		UI span for floating taps
24	c(0)	0.54		min	rho_x	0.19			bmaxg	0.2	max DFE value for floating taps
25	c(-1)	[-0.1667]		[min:step:max]	fixture delay time	[00]	[port1 port2]		cable assemblies require this for each HCB		
26	c(-2)	[0]		[min:step:max]	TDR_W_TXPKG	0			ICN parameters (v2.73)		
27	c(-3)	[0]		[min:step:max]	N_bx	3	UI		f_f 21.448		
28	c(1)	[-0.0417]		[min:step:max]	Re	ceiver testing			f_n	21.448	
29	N_b	3	UI		RX_CALIBRATION	0	logical		f_2	24.000	
30	b_max(1)	0.8			Sigma BBN step	5.00E-03	v		A_ft	0.600	
31	b_max(2N_b)	0.3				Noise, jitter			A_nt 0.600		
32	g_DC	[-15]	dB	[min:step:max]	sigma_RJ	0	UI		heck_3ck_03b_0319	Adopted Mar 2019	
33	f_z	12.8	GHz		A_DD	0	UI	[walker_3ck_01d_0719	Adopted July 2019	
34	f_p1	12.8	GHz		eta_0	8.2E-09	V^2/GHz		result of R_d=50		
35	f_p2	32	GHz		SNR_TX	100	dB		benartsi_3ck_01a_0719	no used for KR	
36	g_DC_HP	[0]		[min:step:max]	R_LM	1			mellitz_3ck_03_0919		
37	f_HP_PZ	0.4	GHz		CDR	Mod-MM	M or Mod-MN	м	under consideration		

- COM ver2.75.
- Fixed TXLE, Fixed CTLE and 3-tap DFE.

Experiment 1 – Statistical BER contour in different EDA tool

 5×10^{9} 0.03 0.03 0.03 Sampling COM Tool EDA#1 EDA#2 0.02 0.02 0.02 point Voltage [V] Voltage [V] 0.01 0.0 Voltage [V] -0.01 -0.01 -0.02 -0.02 -0.02 4.260 dB COM <u>IR</u> -0.03 └─ -0.5 -0.03 --0.5 -0.03 -0.5 -15 6100 6350 -0.4 -0.3 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 6150 6200 6250 6300 02 -0.1 0.1 -0.1 0.1 0.2 0.3 0 Time [index] Time [UI] Time [UI] Time [UI] 0.03 0.03 0.03 Cursor EDA#3 EDA#4 EDA#5 0.02 0.02 0.02 Voltage [V] Voltage [V] Voltage [V] 0.01 0.01 0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 PR -0.03 -0.03 -0.03 6150 6200 6250 6300 6350 -0.5 -0.3 0.4 0.5 -0.5 -0.3 -0.2 0.1 0.2 0.4 0.5 -0.4 -0.2 -0.1 0.1 0.2 0.3 -04 -0.1 03 -0.5 -0.4 -0.3 -0.2 -0.1 0.2 0.3 0.4 0.5 Time [index] Time [UI] Time [UI] Time [UI] 0.03 EDA#6 0.02 Voltage [V] 0.01 EDA tools showing significant differences in margin. -0.01 -0.02 -0.03 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0

1. <u>TXLE+ CTLE+ DFE based on Peak of Pulse</u>

[1/s]

0.05

0.04

0.03

0.02 0.01

-0.01

-0.02

Voltage [V]

Experiment 1 – Statistical BER contour in different EDA tool

2. TXLE+ CTLE+ DFE based on Mueller-Muller (MM) PD

IBIS Summit 2020 - Gap in IBIS for sampling with statistical mode AMI models Time [UI]

@BER 1e-5

Experiment 1 – Statistical BER contour in different EDA tool

@BER 1e-5

Experiment 2 – Importance of Sampling Position

Peak-of-pulse Phase vs. Mueller-Muller Phase Detectors (PDs)

Sampling center T [%] = 100*TM_L/(TM_L+ TM_R)

Experiment 3 – Problem with Timing Margin

EDA tools must "guess" the sampling in statistical mode given the DFE is applied in the IBIS-AMI model.

Call to Action

- 1. Statistical-mode-based simulations are widely used.
- 2. IBIS specification has a gap if we want IBIS-AMI to behave accurately to silicon design consistently across EDA tools. We should consider adding sampling point information to AMI_Init.

<u>The Larger Question</u>: Who controls the presentation & calculation of the eye?

Should not model-makers be able to represent silicon behavior <u>completely</u>, including sampling, in both statistical and time-domain modes?

Resolution

Why not follow the BIRD process? Some possible options we've come up with:

- 1. Sampling index from Rx AMI_Init
 - If simulator had sampling index returned from Rx AMI_Init, it would have information to align its sampling assumptions.
 - Sampling index would be similar in function as AMI_GetWave clock_times
- 2. Options from EDA tools on phase detectors
- Simulator could give users different phase detector sampling controls in statistical mode.
- 3. Sampling extraction method from IR
 - Come up with an extraction methodology for simulators to use when determining sampling point in statistical mode.
- 4. AMI model to provide results directly
 - To ensure similar results due to the use of the AMI standard, allow models to report eyes, bathtub curves, etc.

Thank You

IBIS Summit 2020 - Gap in IBIS for sampling with statistical mode AMI models

Backup Material

- Experiment2 channel building
- Peak Sampling
- Edge Detect Sampling
- Mueller-Muller Sampling
- Modified Mueller-Muller Sampling
- Hula Hoop Algorithm
- Unit Impulse Response Definition

Experiment 2 channel building

	А	В	С	D	E F	G	Н	J	К	L
1		Table 93A-1 para	meters			I/O control			Table 93A–3 parameter	'S
2	Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
3	f_b	32	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.002 0.0003]	
4	f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.141E-03	ns/mm
5	Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_	1_PK_KR_{date	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
6	C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	benart	si_3ck_01_0119 & mellitz_3	3ck_01_0119
7	L_s	[0 0]	nH	[TX RX]	Port Order	[1324]			Table 92–12 parameter	S
8	C_b	[0 0]	nF	[TX RX]	RUNTAG	KR_eval_		Parameter	Setting	
9	z_p select	[2]		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
10	z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]	(Operational		board_tl_tau	5.790E-03	ns/mm
11	z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	100	Ohm
12	z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	10.5	dB	z_bp (TX)	110.3	mm
13	z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	1.00E-12		z_bp (NEXT)	110.3	mm
14	C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	110.3	mm
15	R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	110.3	mm
16	R_d	[50 50]	Ohm	[TX RX]				C_0	[0]	nF
17	A_v	0.415	V		TDR	and ERL options		C_1	[0]	nF
18	A_fe	0.415	v		TDR	1	logical	Include PCB	1	logical
19	A_ne	0.608	v		ERL	1	logical			
20	L	2			ERL_ONLY	0	logical		Floating Tap Control	
21	М	32			TR_TDR	0.01	ns	N_bg	0	0 1 2 or 3 groups
22		filter and E	q		N	3000		N_bf	0	taps per group
23	f_r	0.75	*fb		beta_x	2.3407E+09		N_f	0	UI span for floating taps
24	c(0)	0.54		min	rho_x	0.19		bmaxg	0.2	max DFE value for floating taps
25	c(-1)	[-0.1667]		[min:step:max]	fixture delay time	[00]	[port1 port2]	cable assemblies require t	his for each HCB	
26	c(-2)	[0]		[min:step:max]	TDR_W_TXPKG	0			ICN parameters (v2.73)
27	c(-3)	[0]		[min:step:max]	N_bx	3	UI	f_f	21.448	
28	c(1)	[-0.0417]		[min:step:max]	Re	ceiver testing		f_n	21.448	
29	N_b	3	UI		RX_CALIBRATION	0	logical	f_2	24.000	
30	b_max(1)	0.8			Sigma BBN step	5.00E-03	V	A_ft	0.600	
31	b_max(2N_b)	0.3			I	Noise, jitter		A_nt	0.600	
32	g_DC	[-15]	dB	[min:step:max]	sigma_RJ	0	UI	heck_3ck_03b_0319	Adopted Mar 2019	
33	f_z	12.8	GHz		A_DD	0	UI	walker_3ck_01d_0719	Adopted July 2019	
34	f_p1	12.8	GHz		eta_0	8.2E-09	V^2/GHz	result of R_d=50		
35	f_p2	32	GHz		SNR_TX	100	dB	benartsi_3ck_01a_0719	no used for KR	
36	g_DC_HP	[0]		[min:step:max]	R_LM	1		mellitz_3ck_03_0919		
37	f_HP_PZ	0.4	GHz		CDR	PK	M or Mod-MN	under consideration		

 Scaled z_bp in targeting a certain loss.

Peak sampling

- Cursor value is selected at peak of pulse response
- Pre-cursor = cursor UI
- Post-cursor = cursor + UI

Edge Detect Phase Detector

Figure 19: R-rate receiver architecture for center sampling using BB-PD

https://www.signalintegrityjournal.com/articles/1293-methodology-for-performance-comparison-of-center-andedge-sampling-in-serial-links?page=2

MM Phase Detector

Figure 20: R-rate receiver architecture for center sampling using MM-PD

https://www.signalintegrityjournal.com/articles/1293-methodology-for-performance-comparison-of-center-andedge-sampling-in-serial-links?page=2

http://www.ieee802.org/3/ck/public/adhoc/dec12 18/lu 3ck adhoc 01 121218.pdf

1/31/2020

IBIS Summit 2020 - Gap in IBIS for sampling with statistical mode AMI models

H. Zhang et al., "PAM4 Signaling for 56G Serial Link Applications – A Tutorial", DesignCon 2016.

F. Spagna *et al.*, "A 78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-rate CDR in 32nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 366-367.

Modified Mueller-Muller (Mod-MM) Phase Detector

MM-PD : $h(t_s - T)$ Modified PD :	- $h(t_s)b(1)$, Annex(93A) - $h(t_s)b(1)$, Remove the impact of pre-1	cursor (New).
HLDING A BETTER CONNECTED WORLD	5	

Comparison of COM reference receivers with different configurations

#	A n-t	: DFE ap DFE	ʻm	B: FFE-lite -pre & 0-post [*] n-tap DFE	C: FFE-heavy 'm-pre & n-post' FFE + 1-tap DFE			
Sampling Phase	MM-PD MM-PD/ Modified PD		MM-PD	Modified PD	Modified PD	Do not care.		
b_max	0.7	1.0	0.7	0.7	0.6	0.7		
Performance	Lowest 🗶	Low 🗴	High 🗸	High 🖌	High 🗸	High 🗸		
Control of b(1)	Good 0.7~0.8	Better ~0.7	Worst 0.8~1.1 🗴	Good 0.73~0.86	Better 0.65~0.74 √	Best =0.7 🗸		
Correlation with others	Less COM FFE-ba	l correlation with sed receivers		Highly	correlated with each other \checkmark			
Support C2M FFE receiver	No 🗶	No 🗶	(set b_ma	Yes ax=0, and adjust FFI	Yes (set b_max=0) ✓			
DFE error propagation modeling complexity	High	High	High	High	High	Low		
Post-FEC performance	Low?	Low?	Low?	Low?	Low?	High		
Implementation Compliance	Good	Good	Low	Low	Low	High		
Implementation Complexity	Low	Low	High	High	High	Low		
 DFE based receiver has performance concern, even removes the 'b_max=0.7' constrain. Modified PD is recommended to achieve better b(1) control for FFE-lite and DFE receivers. Both FFE-lite and FFE-heavy are usable as COM reference receiver, the correlations of these two receivers are high. 								
ILDING A BETTER CONNECTED WORLD				8		AUH 🎺		

http://www.ieee802.org/3/ck/public/adhoc/dec12 18/lu 3ck adhoc 01a 121218.pdf

Where, b(1) is the DFE magnitude, first coefficient

MUAWEI

Bl

Hula Hoop algorithm

Figure 6 illustrates the procedure as applied in a waveform viewer. This procedure only takes a minute or two, and is quite precise.

- 1. The user starts by placing two vertical markers exactly one UI apart in a position that straddles the main pulse.
- 2. The user places a horizontal marker that is centered between the points where the vertical markers intersect the pulse response.
- The user shifts both vertical markers to approximately the intersection of the horizontal marker with the pulse response, while keeping them exactly one UI apart.
- Steps 2 and 3 are repeated until both the vertical markers and horizontal marker intersect the pulse response while the vertical markers have remained one UI apart.
- 5. The recovered clock time is half way between the two vertical markers. This recovered clock time and times before and after that are an integer number of UI away are the times at which the intersymbol interference is to be evaluated.

http://siguys.com/wp-content/uploads/2016/01/2016 DesignCon NewTechniquesPerformanceTuning.pdf

Unit Impulse Response definition

- The derivate of the unit step function is the unit impulse function.
- The impulse response of a system is important because the response of a system to any arbitrary input can calculated from the system impulse response using a convolution integral.
- Units of the unit impulse are 1/s (i.e., inverse seconds). If system input has units of volts then we must implicitly multiply the unit impulse by its area, or 1V-s.
- It is important to keep in mind that the impulse response of a system is a zero state response (i.e., all initial conditions equal to zero at t=0-).
- <u>https://lpsa.swarthmore.edu/Transient/TransInputs/TransImpulseTime.html</u>
- <u>https://lpsa.swarthmore.edu/Convolution/CI.html</u>

