European IBIS Summit at SPI2019, June 21, 2019, Chambery, France

Addressing non-ideal TX-FFE behavior of high-speed drivers through hierarchical waveform approximations

C. Siviero, R. Trinchero, S. Grivet-Talocia, I. S. Stievano, M. Telescu

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy Université de Bretagne Occidentale; CNRS, UMR 6285 Lab-STICC; Brest, France stefano.grivet@polito.it

POLITECNICO DI TORINO

Signal Integrity Simulations

Types of "SI" Analyses:

- S-Parameter
 - Insertion Loss
 - Return Loss
 - FEXT/NEXT
- TDR/TDT
- Eye-diagrams / .TRAN
 - Mask / BER
 - Optimal PHY/EQ Settings

2

• SI/PI Co-Sim

Evaluation of Channel "Performance"

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

High-Speed Serial Links

Very complex TX and RX topologies, with Equalizers, in order to revert the low-pass filter behavior of the interconnections

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

IBIS@SPI2019

High-Speed Serial Links

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

IBIS@SPI2019

High-Speed Serial Links

TX Feed Forward Equalizer

Intentional distortions on TX Signals depending on Bit-Pattern transitions

De-emphasis = 20 log₁₀Vb/Va Preshoot = 20log₁₀Vc/Vb Boost = 20log₁₀ Vd/Vb

Reference: http://www.ece.tamu.edu/~spalermo/ecen720.html

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

Standard simulation framework: IBIS-AMI

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

IBIS@SPI2019 9

Standard simulation framework: IBIS-AMI

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

SPI2019 10

Pre-/De-Emphasis impementation

0.8 0:0:0:0 0 0 1:0 0 0.6 0.4 0.2 $v_d(t) V$ 0 -0.2-0.4-0.6 pre-emph idle 1st-tap pre-emph. -0.8 20 N 15 25 30 35 5 10

Real Example: no TX-EQ vs TX-EQ

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019 11

Switching pattern

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

PI2019 12

Switching pattern

MPILOG Models

S. Grivet-Talocia et al.

MPILOG Models

$$b_{1,2} = (v_{1,2} - Z_0 \cdot i_{1,2}) / (2 \cdot \sqrt{Z_0})$$

$$a_{1,2} = (v_{1,2} + Z_0 \cdot i_{1,2}) / (2 \cdot \sqrt{Z_0})$$

Scattering waves

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

Static Characteristics

Static Characteristics

- Surfaces look quite "regular" \rightarrow is it possible to *simplify* characterization?
- Parallel planes \rightarrow linear \rightarrow this justifies all assumptions of IBIS-AMI, superposition, etc...

Weighting Functions: embedding pre-emphasis

Unknown

$$a_{1} = w_{1H} \cdot f_{1SH}(b_{C,NOM}, b_{C,NOM}) + w_{1L} \cdot f_{1SL}(b_{C,NOM}, b_{C,NOM}) + f_{1d}(b_{C,NOM}, b_{C,NOM})$$
From HSPICE

Known from static surface characterization

Pre-/De-emphasis effect is embedded in the weighting functions

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

Weighting Functions: embedding pre-emphasis

MYBIT is synthesized in order to **stress** all **possible TX state-transitions**.

Example: 1 post-tap

Weighting Functions

For any **given bit-pattern**, the **global weighting functions** are calculated by **concatenation** of the **basis functions**.

Summary

- IBIS-AMI modeling
 - Ideal for drivers that behave almost linearly
 - Ideal for algorithmic parts
 - Pre/de-emphasis easily accounted for (algorithmically: ideal FIR)
 - Limited support for common-mode (may be very important)
- MpiLog modeling
 - General, can be applied to linear and nonlinear drivers
 - Can include Pre/de-emphasis, but may require many basis functions
 - Natively supports common mode (and power supply ports)
- Transistor-level modeling
 - Not an option, too slow

Switching pattern

Note: slow transient!

The slow transient is not a linear combination of shifted pulses!!

Algorithmic approach may fail: no FIR approx

The proposed model structure

Note 1: intrinsic multi-port formulation, common-mode embedded by construction

Note 2: pre/de-emphasis embedded in the switching waveforms

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations

IBIS@SPI2019 25

Initial rough approximation

Initial rough approximation

Add finer and finer details in a refinement loop

Initial rough approximation

Add finer and finer details in a refinement loop

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

Initial rough approximation

Add finer and finer details in a refinement loop

$$\begin{split} \xi_{n}(t) &= \sum_{k \in \Omega_{n,u}^{(0)}} \varphi_{n,u}^{(0)}(t - kT_{B}) + \sum_{k \in \Omega_{n,d}^{(0)}} \varphi_{n,d}^{(0)}(t - kT_{B}) \\ &+ \sum_{k \in \Omega_{n,u}^{(1)}} \varphi_{n,u}^{(1)}(t - kT_{B}) + \sum_{k \in \Omega_{n,d}^{(1)}} \varphi_{n,d}^{(1)}(t - kT_{B}) & \stackrel{>}{\underset{\mathbb{S}}{\to}} 0 \\ &+ \sum_{k \in \Omega_{n,u}^{(2)}} \varphi_{n,u}^{(2)}(t - kT_{B}) + \sum_{k \in \Omega_{n,d}^{(2)}} \varphi_{n,d}^{(2)}(t - kT_{B}) & \stackrel{-0.2}{\underset{0}{\to}} 0 \\ &+ \cdots \end{split}$$

Note: similar to JPEG compression and Wavelet transforms

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IB

IBIS@SPI2019 29

Initial rough approximation

Add finer and finer details in a refinement loop

Pulse responses of the TX block, including pre/de-emphasis

Note: similar to JPEG compression and Wavelet transforms

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

PI2019 30

From TX to full channel responses

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS

IBIS@SPI2019 31

Full channel response hierarchical decomposition

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@

Basis functions φ (no channel)

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

Basis functions: ψ (with channel)

Results: model validation

Results: model validation

Results: application to a real data link

Results: eye pattern

Received voltage, 1e6 PRBS-31 pattern

1e6 PRBS-31 pattern
 CPU time <30 s
 (Matlab, not optim.)

S. Grivet-Talocia et al.

Addressing non-ideal TX-FFE behavior through hierarchical waveform approximations IBIS@SPI2019

Conclusions

- Novel model structure for differential drivers with pre-emphasis
 - Includes common-mode
 - Includes analog effects of TX-FFE HW implementation (slow transients)
 - Based on hierarchical decomposition of switching signals
 - Tradeoff between accuracy and complexity
 - Fully linear
- Proposed enhancement of IBIS-AMI framework
 - Proposed model fits naturally into IBIS-AMI framework
 - Enables fast waveform simulation and eye diagram construction