ZTE

_........

Power Integrity Analysis for High Speed ASICs

Meng Liqiang Liu Xiaoxuan

Meng.Liqiang@zte.com.cn Liu.Xiaoxuan1@zte.com.cn

IBIS Summit at IEEE Virtual SPI May 12, 2021

?

Agenda

Summary

 \succ

 \geq

 \triangleright

 \geq

©ZTE All rights reserved 2021

Maximum Current in Different Application Domains

PDN Characteristic Impedance Design

PDN Design Flow with CPM Model

Maximum Current in Different Application Domains

?

Agenda

Summary

 \geq

 \succ

 \triangleright

 \geq

©ZTE All rights reserved 2021

Maximum Current in Different Application Domains

PDN Characteristic Impedance Design

PDN Design Flow with CPM Model

Target Impedance Definition

- The transient current is the maximum current change at any possible operation
- If transient current reaches up to hundreds of Amps, the target impedance will become smaller

Figure 1. transient current

Pre-Simulation for High-Speed ASICs

Basic information

- ✓ Supply voltage is 1 Volt
- ✓ Max current is 380 Ampere
- ✓ Transient current is 50% of Imax
- ✓ V_ripple is 5%

Characteristic Impedance results

- ✓ Z_target is about 0.00026 ohm
- ✓ The calculated Z_target is extremely low as illustrated in Figure 2
- ✓ Even with 415 decaps at pre-simulation stage, the characteristic impedance Zeff is still far away from Z_target

ltem	CAP Value (µF)	QTY
1	0.047	100
2	0.1	250
3	22	10
4	47	30
5	330	5
6	470	20
Total Capacitor Count		415

Figure 2. A Real Project PDN Impedance Design

Agenda

- Maximum Current in Different Application Domains
- PDN Characteristic Impedance Design
- > PDN Design Flow with CPM Model
- Summary

Transient Analysis

- The traditional target impedance design cannot meet the requirement in case of heavy current
- It is very necessary to use the CPM model for transient analysis
- > VRM and CPM are provided by vender
- PCB model is extracted with precise DC point
- Set up for AC and transient analysis

VRM

GND

Chip Power Modeling

CPM model consists of

- Package and Die Decaps info
- Controlled transient current

Transient analysis can provide

- Noise on die
- Noise at bumps
- Resonance
- Optimization of decaps on PCB
- Tradeoffs for die and package decaps
- As a reference target impedance

Simulation Setup

- > VRM RLC or SPICE model
- PCB Broadband SPICE or S-parameter
- > PKG S-parameter or RLC model
- Controlled current model under different operating modes on die

Figure 5. System Simulation Setup for Core VDD

Simulation Result

- Input and Requirement
 - 380A+ max current
 - Delay the power up/down current waveform as follows Lane 1: Ons and Lane 2: 200ns ~Lane 8: 2500ns
 - AC+DC total 6% Tolerance
- Transient Analysis Results
 - AC noise is 1.9%
 - DC IR Drop is 4%

Characteristic Impedance Results

- Target Impedance as low as 0.00026 ohm below 10MHz (Blue)
- Characteristic Impedance is about 0.004 ohm at postsimulation Stage (Red)

Conclusions

- Even though the characteristic impedance is worse than target impedance, transient analysis shows that AC noise meets the requirement
- This characteristic impedance can be considered as target impedance for similar designs with the same chip

Figure 6. Transient Analysis Result

Figure 7. Characteristic Impedance Result

Validation

- Transient Analysis Result
 - 16mV@BGA (red: m3-m5)

Measurement Result

• 18.8mV@BGA, test BW is 20MHz

Conclusion

• There are 14% difference between simulation and measurement ,which both meeting the requirement of AC tolerance

Figure8. Transient Analysis Simulation vs Test

?

Agenda

Summary

 \geq

 \geq

 \triangleright

 \triangleright

©ZTE All rights reserved 2021

Maximum Current in Different Application Domains

PDN Characteristic Impedance Design

PDN Design Flow with CPM Model

- It is very difficult to meet the requirement of target impedance when there is a heavy current at the PCB level
- Characteristic impedance obtained from transient analysis with CPM model can serve as a reference target impedance for similar designs
- Relatively accurate CPM model is required
- Power up/down current sequence can be optimized for different blocks

Leading 5G Innovations