

European IBIS Hybrid Summit SPI

Variability-Aware Modeling of Supply Induced Jitter in CMOS Inverters

by

Vinod Kumar Verma and Jai Narayan Tripathi

Dept. of Electrical Engineering, Indian Institute of Technology Jodhpur, India

May 10, 2023 Aveiro, Portugal

IEEE

- Introduction
- Problem Statement
- Noise and Process Variations in CMOS Inverters
 - Input-Output Relationship
 - Modeling of Jitter
- Results and Discussion
- Conclusion

Introduction

- At nano-scale technology a larger number of transistors are integrated per unit area of silicon.
- Low-power, multifunctional and compact consumer electronics devices.
- Variability is a big concern for the designers due to multiple factors.
- Electrical performance of ICs is mainly affected by two factors.
 - Environmental and functional factor: supply fluctuation, temperature, and switching activity of the transistors.
 - Physical limitations (inaccuracies during fabrication process): variation in oxide thickness, length and width of the transistors, variation in electrical properties of interconnects, etc.
- * A. Chandrakasan, W. J. Bowhill, and F. Fox, Models of Process Variations in Device and Interconnect, 2001, pp. 98–115.
- S. K. Saha, "Compact MOSFET Modeling for Process Variability-Aware VLSI Circuit Design," in IEEE Access, vol. 2, pp. 104-115, 2014.

Introduction

- Because of the variations in these parameters the signal gets affected.
- Several issues related to signal and power integrity arise such as: variation in rise/fall time i.e. time interval error (TIE) and jitter.
- **TIE** is a short term variations of a transition edge of signal with respect to its ideal position in time.
- Difference between the maximum and the minimum value of TIE determines **Jitter**.


```
Fig. 1: TIE and Jitter Representation
```

- A. Chordia and J. N. Tripathi, "Uncertainty quantification of RF circuits using stochastic collocation techniques," IEEE Electromagnetic Compatibility Magazine, vol. 11, no. 1, pp. 45–56, 2022.
- J. N. Tripathi, V. K. Sharma and H. Shrimali, "A Review on Power Supply Induced Jitter," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 3, pp. 511-524, March 2019, doi: 10.1109/TCPMT.2018.2872608.

European IBIS Hybrid Summit, IEEE SPI 2023

Problem Statement

- IC ALD1105 having monolithic dual Nchannel and P-channel complimentary matched transistor pair.
- Input data rate 1 Mbps is taken.
- The output response of 120 CMOS inverters are taken without inserting any noise.
- No single inverter is precisely similar to the others.
- Variation in the output response spans up

to 25 nsec at $V_{DD}/_2$ level.

Fig. 2: Output responses of 120 CMOS inverters.

�IEEE

- CMOS inverter is one of the fundamental building blocks in ICs.
- Its timing uncertainty may affect performance the entire system.
- In high-speed VLSI designs, it is essential to understand the impact of jitter on the performance of the system.
- This work studies the effect of variability on PSIJ.
- Variability aware modeling of Jitter can be helpful for VLSI designers to optimize their design for better performance.

European IBIS Hybrid Summit, IEEE SPI 2023

• Noise: A small signal noise source is inserted at the supply terminal.

 $v_s(t) = A_s \sin(\omega_s t + \phi_s)$

• Input Data Signal: A fast rising edge of the input signal is considered with rise time τ .

$$V_{in}(t) = \begin{cases} 0, & \text{if } t \leq 0\\ V_{DD}\left(\frac{t}{\tau}\right), & \text{if } 0 \leq t \leq \tau\\ V_{DD}, & \text{if } t \geq \tau \end{cases}$$

- Process Parameters subjected to Random Variations: Width of the transistors (W_P and W_N) are considered as random variable.
 - **Note:** Random variables are represented in bold letters.

Fig. 3: CMOS Inverter in the presence of PSN.

IEEE

• The entire falling edge of the output is divided in to **5 regions** depending on the operating mode of the transistors.

	Mode of Operation of Transistors	Range of Input (Voltage levels)	Duration of the Time of various Regions
I.	<i>M_P</i> : Linear, <i>M_N</i> : Cut-off	0 to <i>V</i> _{<i>TN</i>}	0 to $T_1 = \frac{V_{TN}\tau}{V_{DD}}$
н.	M_P : Linear M_N : Enters in Saturation	V_{TN} to $(V_{DD} - V_{TP})$	T_1 to $T_2 = \frac{(V_{DD} - V_{TP})\tau}{V_{DD}}$
III.	M_P : Enters in Cut-off M_N : Saturation	$V_{DD} - V_{TP} $ to V_{DD}	T_2 to $T_3 = \tau$
IV.	<i>M_P</i> : Cut-off <i>M_N</i> : Saturation	V _{DD}	T_3 to $T_4 = T_{sat_n}$
V.	M_P : Cut-off, M_N : Linear	V _{DD}	T_4 to ∞

 The output response of every region is concatenated in time to obtain the final output response.

Fig. 4: Output Response of CMOS Inverter for rising input.

- V. K. Verma and J. N. Tripathi, "Analytical Modeling of Deterministic Jitter in CMOS Inverters," in IEEE Transactions on Signal and Power Integrity, doi: 10.1109/TSIPI.2023.3264961.
- V. K. Verma and J. N. Tripathi, "Device parameters based analytical modeling of ground-bounce induced jitter in cmos inverters," IEEE Transactions on Electron Devices, vol. 69, no. 10, pp. 5462–5469, 2022

European IBIS Hybrid Summit, IEEE SPI 2023

IEEE

- Estimation of **jitter** needs to done at midpoint (i.e. $V_{DD}/_2$ voltage level) of the output response i.e. in Region-4.
- Output Response of Region-4:

$$V_{out}(t) = V_{34} - \frac{\gamma_3}{2} (V_{DD} - V_{TN})^2 (t - T_3)$$

• V_{34} is a constant term used to maintain the continuity between the Region-3 and Region-4.

$$\boldsymbol{V_{34}} = \frac{\gamma_1 V_{DD}}{\tau} (T_3 - T_2) + \frac{\gamma_3 \tau}{3V_{DD}} \left[\frac{V_{DD}}{\tau} (T_3 - T_2) - V_{TN} \right]^3 + \boldsymbol{V_{23}}$$

where,

$$\gamma_1 = \frac{C_M}{C_M + C_L}$$
, $\gamma_3 = \frac{\beta_n}{(1 + \delta_n)(C_M + C_L)}$, $\beta_n = \mu_n C_{ox} \frac{W_n}{L_n}$

• Suppose ϕ_{s_0} is the initial phase of the noise source, the phase value for j^{th} edge is:

$$\phi_{s_j} = \phi_{s_0} + \omega_s T_d (j-1)$$

• The output expression for j^{th} transition edge can be given as:

$$V_{out}(t, j) = V_{34_j} - \frac{\gamma_3}{2} (V_{DD} - V_{TN})^2 (t - T_3)$$

• The time stamp of the j^{th} transition edge at $V_{DD}/_2$ voltage level is:

$$t_j = \frac{V_{34_j} - (V_{DD}/2)}{(\gamma_3/2)(V_{DD} - V_{TN})^2} + T_3$$

• Time Interval Error is:

$$TIE_j = t_j - T_0$$

• Jitter at the output is :

$$Jitter = max(TIE_j) - min(TIE_j)$$

Results

• Example-1: Jitter is estimated only considering PSN (amplitude of 40 mV and frequency of 537 MHz).

Fig. 5: Output Response of CMOS Inverter in presence of PSN.

- **SPI** 2023
- Example-2: Jitter is estimated considering random variation in widths of the transistors (W_P and W_N) and PSN (amplitude of 40 mV and frequency of 537 MHz).
- 500 samples of each random variables $(W_P \text{ and } W_N)$ are taken.

Fig. 6: Output Response of CMOS Inverter in presence of PSN and variability.

Results

- Example-3: Jitter is estimated considering random variation in width of the transistors (W_P and W_N) and PSN (amplitude of 40 mV and frequency of 537 MHz).
- 900 samples of each random variables $(W_P \text{ and } W_N)$ are taken.

Statistical Parameters				
Parameters	SPICE	Analytical		
Mean (psec)	13.20	14.24		
Standard Deviation (psec)	0.317	0.299		
CPU time in hours	2.15	0.36		

Fig. 7: Output Response of CMOS Inverter in presence of PSN and variability.

2

IEEE

- Example-4: The measurement setup was prepared to analyse variation in jitter due to PSN and variability.
- 120 inverters are designed using IC ALD1105.
- UB Jitter = 19.20 nsec, LB Jitter = 20 nsec and Total Jitter = 58.0 nsec.
- $V_{DD} = 5 V$, Input data rate = 1 Mbps.

Fig. 8: Measurement setup.

• **PSN:** sinusoidal having peakto-peak amplitude of 500 mV, and frequency of 4.733 MHz.

Fig. 9: UB and LB Jitter.

- This work introduces a **new perspective for jitter estimation** in high-speed VLSI circuits.
- It develops an analytical approach to estimate the jitter in CMOS inverters, induced due to power supply noise when process variations are present in the circuit.
- The results suggest that variability-aware modeling of power supply induced jitter in ICs needs to done in order to achieve robust design.
- Overall, variability aware modeling of jitter is can a important tool for VLSI designers.
- It can ensure the better performance of ICs and meet the required design specifications.

THANK YOU

European IBIS Hybrid Summit, IEEE SPI 2023

Variability-Aware Modeling of Supply Induced Jitter in CMOS Inverters