

To obtain high accuracy results of IBIS-AMI channel simulation

Masaki Kirinaka

mkirinaka@fujitsu.com Akiko Tsukada tsukada.akiko@fujitsu.com FUJITSU INTERCONNECT TECHNOLOGIES LIMITED

Asian IBIS Summit Tokyo, JAPAN November 13, 2020

- SAMPLES PER BIT setting in simulation including jitter
- Summary

Introduction

Agenda

•

Introduction

- Channel simulation using IBIS-AMI has become widespread for highspeed serial signals.
- Data rate is also increasing to 5Gbps, 10Gbps, 25Gbps, and above.
- Conversely, Unit Interval becomes shorter to 200ps, 100ps, 40ps, and less.
- Jitter(Dj, Rj of Tx, Rx) is even smaller, from one-thousandth to onehundredth of Unit Interval.
- For that reason, in simulation that include jitter, special attention must be paid to simulation accuracy.
- SAMPLES PER BIT setting in EDA tool determines simulation accuracy.
- Therefore, this time, investigated the SAMPLES PER BIT setting to obtain accurate simulation result.

SAMPLES PER BIT determines simulation accuracy. Explain it below.

Sampling interval[sec]=(1/Data rate)/SAMPLES PER BIT

Example: (1/25e9)/8=5ps

Sampling interval[sec]

How used within EDA tool

In time domain simulation.

- Generate digital input waveform from bit streams
- Output interval of Impulse response
- Output interval of ^(*)Convolution by input stimulus and impulse response (*)equal to the analog input waveform to Rx

How used within Algorithmic model(.dll)

In time domain simulation. Passed from the EDA tool to the argument "sample_interval" of the function" AMI_Init" of the Algorithmic model.

- Output interval of equalized digital input waveform
- Output interval of equalized Rx output waveform

• Generate digital input waveform from bit streams

Output interval of equalized digital input waveform

Output interval of Impulse response

 Output interval of Convolution by input stimulus and impulse response (= Rx analog input waveform)

Output interval of equalized Rx output waveform

FUĬ

- Jitter value is very small compared to Unit Interval. Example: Tx Random jitter=0.8ps (At 25Gbps, Rj(rms)=0.02UI, 1UI=40ps)
- Simulation method including Random jitter: EDA tool adds jitter to Tx input waveform according to formula below. *Time(n) = n * bit_time + Tx_Rj * gaussian_rand() → from IBIS spec.* From above equation, random jitter has Gaussian distribution.

Jitter is not applied correctly to Tx input stimulus when SAMPLES PER BIT is small.

For example, when 25Gbps/Random jitter(rms)=0.005UI, verify appropriate SAMPLES PER BIT below.

Method of verification

- Use topology below. Perform channel simulation with some SAMPLES PER BIT changes.
- Evaluate quality of SAMPLES PER BIT setting by Jitter Histogram of eye diagram.
- If SAMPLES PER BIT setting is appropriate, Random jitter Histogram will be Gaussian distribution.

FUJITSU

Verification Results Histogram on left side of eye diagram

FUJITSU

Results Summary

Samples per bit	Sampling Interval(ps)	Random Jitter(ps)	Number of Samplings per Rj_rms	Simulation Accuracy
	[25Gbps, 40ps/UI]	[Rj(rms)=0.005UI]		Gaussian distribution?
2048	0.020	0.2	10.00	Good
1024	0.039	0.2	5.12	Good
512	0.078	0.2	2.56	Good
256	0.156	0.2	1.28	Bad
128	0.313	0.2	0.63	Bad
64	0.625	0.2	0.32	Bad
32	1.250	0.2	0.16	Bad

Copyright 2020 FUJITSU INTERCONNECT TECHNOLOGIES LIMITED

- FUJITS
- SAMPLES PER BIT is important setting that determines simulation accuracy.
- Correct Tx input digital waveform will not be generated without proper SAMPLES PER BIT.
 Therefore, subsequent simulation will also be inaccurate.
- In the channel simulation with Rj_rms=0.005UI(0.2ps) at 25Gbps(40ps/UI), SAMPLES PER BIT for obtaining accurate results is 512 or more.
- That is, it is necessary to set SAMPLES PER BIT so that number of sample points is 2.5 or more per jitter time.

Summary

Acknowledgement

Special thanks for advice on how EDA tool work in IBIS-AMI channel simulation.

FUJITSU LIMITED

- Hirokazu Hidaka
- Kumiko Teramae
- Akira Ueda

References

- "IBIS (I/O Buffer Information Specification) Version 7.0", IBIS Open Forum 2019 http://www.ibis.org/ver7.0/
 for IBIS-AMI
- JEITA/IBIS Seminar Textbook "IBIS-AMI 初めの一歩" JEITA EDA Model Specialty Committee 2016 for IBIS-AMI

FUJTSU

shaping tomorrow with you