Virtual Asian IBIS Summit (China), November 20, 2020

Automated Analysis and Optimization for Multi-Board SerDes Channels with IBIS-AMI Model

Wei He and Jianfeng Xia Xpeedic Co., Ltd.

Outline

- Challenges on multi-board SerDes channel designs
- I: Accurate EM models for discontinuities along the channel
- II: Channel assembly for multi-board backplane system
- III: SerDes channel analysis with IBIS-AMI model
- IV: IBIS-AMI equalization optimization
- Summary

Challenge on multi-board channel modeling

• There are a variety of different configurations for backplane system.

- SerDes channel simulation faces the following challenges
 - Automated flow to create channels with multi-board configurations
 - Accurate 3D models needed for the channel is overwhelming
 - Optimizing the channel performance with that many variables is prohibitively expensive

I: Accurate EM models for SerDes channels

• Discontinuities along the channel are ubiquitous which require accurate EM models

Need for fast EM solvers

- No single EM solver can solve all the problems with optimal accuracy and performance
- Method of Moments (MoM) solver, Finite Element Method (FEM), or hybrids solver can be the best solver for specific problems.

MoM for On-Chip Passive Modeling

Page 6

MoM for BGA Package Extraction

40mm

6-2-6 Stackup

	unknowns	Number of Freq	Run Time
Pkg./IC Co-Sim.	89033	24	1h
Ref H	919w	25	5h

--MoM Solver

--Ref H

JEED|

40mm

MoM for Interposer Analysis

High Speed Memory I/O Path Large scale transmission line on mesh ground plane

High Speed Serial I/O Path (RDL->TSV) Accurate TSV model is critical for SI

Ð de -70-15 Freq(GHz)

フヒヒィ

FEM Hybrid Solver for Board-level SI Analysis

Via Solver for Board-level Crosstalk Analysis

ICN Victim1

II: Quick assembly of multi-board channel

Neighboring nets for crosstalk can be defined.

Xtalk Field

0

3

0

0

 \circ

Multi-board system with connector RefDes

Board-to-board connectivity is established by connector pin-mapping

Building channels with or without crosstalk across multi-board backplane system can be automated

Auto EM model build to create the channel

- S-parameter, SPICE, etc. models can be extracted.
- Transmission line is extracted by 2D solver.
- Via is extracted by FEM or Hybrid solver.

III: SerDes channel analysis with IBIS-AMI model

IV: IBIS-AMI Equalization Optimization

Comparison of Equalization Methods

CTLE	$\begin{array}{c} D_n \\ \bullet \\ C_{-1} \\ \bullet \\ $	FFE	x_{k} $\sum \qquad y_{k}$ $-d \qquad f$ Bit Slicer $y_{k} = x_{k} - d \times \operatorname{sgn}(y_{k-m} - v_{th})$		DFE	$ \begin{array}{c} $
 More gain at main energy frequency Amplifying signal also amplifies noise + crosstalk(no better SNR) Trade-off: High Gain + Output Swing vs. Small size + Low power consumption 		 Doesn't amplify noise Easily cancels precursors Signal Attenuated due to peak-power limitation 		ower	 Non-linear equalizer Discrete-Time equalizer clocked by data transfer clock No amplification of noise + crosstalk Can only account for post-cursor(no pre-cursors) 	
Only works well with linear loss channels		Can mitigate the pre-cursor channel response in low-BW channels. Can compensate ISI arising from transient TL loss over wide time-spans.		٦S.	Cannot equalize ISI arising from pre- cursor channel response. Can only compensate ISI from a fixed time-spans.	

Equalization Benchmark

 Equalization play a key role as we switch from baseband, two-level NRZ (non-return to zero) to PAM4 (four-level pulse-amplitude modulation) at lane rates in excess of 50 Gbits/s

Simulation Setup

Support various parametric simulation

TDR TDR(1 Diff1 Diff BP_51mil.s4p - TDR(2,Diff1,Diff1) BP_109.4mil.s4p TDR(3.Diff1.Diff1 BP 137.3mil.s4 [DR(Ohm) 50+ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Time(ns

S parameter parametric

Support on TML Length

How to get a worst case of multi-channel crosstalk?

- Different aggressor channel delay will make eye diagram different.
- Adaptive adjustment of phase delay between aggressors and victim.
- The maximum crosstalk noise is added to achieve worst case analysis and increase design margin.

Result: Eye Diagram

Result: COM (Channel Operating Margin)

	_
FOM	21.0051 dB
TXFFE coefficients	-0.12 0.82 -0.06
CTLE DC gain	-12 dB
CTLE peaking gain	-1.86853 dB
Available signal	0.0539662 dB
levels	2
Pkg_len_TX	12
Pkg_len_NEXT	12
Pkg_len_FEXT	12
Pkg_len_RX	12
baud_rate_GHz	25.7813
f_Nyquist_GHz	12.8906
channel_operating_margin_dB	9.16853
peak_interference_mV	18.78
peak_channel_interference_mV	10.14
peak_ISI_mV	10.14

Name

100GBASE-CR4 Case1 Value

If COM value < 3dB, it will be shown in Red.

Summary

- Multi-board SerDes channel simulation becomes challenging;
- The presentation shows multiple ways to alleviate the challenges including
 - Multiple EM solver techniques to quickly build models for discontinuities along the channel
 - Quick channel assembly for multi-board backplane system with connector pinmapping
 - SerDes channel analysis with IBIS-AMI model
 - IBIS-AMI equalization optimization to achieve the optimal channel performance

