DDR5 AMI Modeling and Simulation

Agenda

- DDR5 Introduction
- DDR5 Main Challenges
- DDR5 Simulation and Modeling Solutions
 - Channel Simulation
 - Why IBIS AMI?
 - DDR5 AMI Challenges & Solutions

DDR5 Introduction

せバリエン

DDR5 Introduction

DDR5 AMI Modeling and Simulation

Feature	DDR4	DDR5	
Data rates	1600-3200 MT/s	3200-8400 MT/s	
Vdd/Vddq/Vpp	1.2/1.2/2.5	1.1/1.1/1.8	
Internal VREF	Vrefdq	VREFDQ, VREFCA, VREFCS	
DQ receiver equalization	CTLE	DFE	
Write leveling training modes	Yes	Improved	
Loopback mode	None Yes		

DDR5 Main Challenges

DDR5 Challenges - Jitter

BER Contour at 1e-16 tells us the Real Margin

- Higher Data Rate \rightarrow Higher ISI
- ISI & RJ will decrease timing margin.

Number of UI	BER	Eye Width	Eye Height
1.3e5	7.69e-6	352.72 ps	310.9 mv
2.80e6	3.57e-7	347.52 ps	288.3 mv
6.31e7	1.58e-8	339.70 ps	275.8 mv
1.10e8	9.13e-9	339.06 ps	271.1 mv
1e9	1e-9	336.45 ps	265.6 mv

• Rx Eye Diagram/BER Contour need to be simulated/measured under low BER (1E-16)

DDR5 Challenges - Jitter

Jitter injected at Tx, and eye measured at the DRAM Solder-Ball (Rx Input)

BER Contour at 1e-16 tells us the Real Margin

8

DDR5 Simulation and Modeling Solutions

Introducing IBIS AMI for DDR Signals

- EQ Necessary for TX: 3 Tap Pre-Emphasis (Feed Forward Equalization)
- EQ Necessary for RX: CTLE/VGA/DFE
- IBIS-AMI offers
- Portability One IBIS-AMI mode can run on many EDA tools
- > IP Protection Digital signal processing behavior is concealed in model DLL/shared object
- ➤ Interoperability IC Vendor A → IC Vendor B (AMI defines a common interface between the vendor model and the EDA channel simulator)
- Non-linearity As complex as the model vendor wishes the model to be
- > Performance Ultra low BER simulations in seconds not days over the traditional SPICE simulation
- AMI has been widely adopted by IC, system and EDA companies for SerDes signals but this is the first application to DDR single-ended signals.

What Do We Need for DDR5 AMI To Work?

Supporting Parallel, single-ended signals with external clocks

Common Mode in Single-Ended Signal

- Single-Ended (SE) signals
 - Both differential and common modes
- → A new reserved parameter **DC_Offset** in BIRD197.7
 - SE waveform at Rx DLL Input node
 = Rx GetWave input + DC_Offset
 - DC_Offset value is a constant that is characterized and passed into Rx Init by EDA tool
 - Rx GetWave input & output waveforms both center around 0V

Asymmetric Rise and Fall Edges in Single-Ended Signal

- Single-Ended (SE) signals
 - Asymmetric rise and fall edges
 - Simulation using symmetrical edges yields unrealistically symmetrical eye, resulting in inaccurate Vref determination and timing and voltage margin measurements.
- → EDA tool will capture asymmetrical rise and fall edges in waveform calculations.

High ISI & Clocking

High ISI & Clocking

- No embedded CDR for DFE in DDR DQ Rx.
- →New parameter **Rx_Use_Clock_Input** in BIRD204
 - Output of DQS (DQS Rx AMI_GetWave)

Appendix: Adaptive DFE

- The action of the DFE is to feed back a weighted sum of past decision to cancel the ISI they cause in the present signaling interval.
 - $y_k = x_k + \sum_{i=1}^{N_{taps}} c_i * slice(y_{k-i})$
- Feedback taps c_i is adapted with adaptive formula:
 - $e = G * y_k slice(y_k)$
 - $c_i = c_{i-1} \alpha * e * slice(y_{k-i})$
 - Where

• G

- y_k is the DFE differential output voltage
- *x_k* is the DFE differential input voltage
- *c_i* is the DFE feedback coefficient
- e is the error value between EQ output at clock and output of decision
- $slice(y_{k-i})$ is the decision function output voltage, it may be BitVoltageAtChannelInput (e.g. ±0.5)
- k is the sample index in UI
 - is scaling factor

High ISI & Clocking

- Controller DQ Rx Model Example
 - VGA, Gain compression, CTLE, adaptive DFE
 - DQS as clock with PI (Phase Interpolator)

- DRAM DQ Rx Model Example
 - VGA, Gain Compression, (CTLE), adaptive DFE
 - DQS as clock

DFE with PI followed DQS

 Controller DQ Rx model can internally train the phase interpolator to adjust data-strobe skew for optimal DFE clocking

Before Equalization

After Equalization (with phase interpolator training)

Jitter Tracking and Unmatched IO Rx

- Correlated jitters in DQ & DQS can be tracked in DQ Rx by clock forwading
- Unmatched DQ & DQS Rx are allowed

DQ Rx package wo. DQ & DQS Tx SJ

DQ Rx output wo. DQ & DQS Tx SJ

time, psec

400 45/

DQ Rx package with. DQ & DQS Tx SJ (5UI DQ-to-DQS delay)

100 150 200 250 300 350

Appendix: Others: TX Equalizer

Pre-shoot or De-emphasis

- Boost signal strength around high frequency range
- Can be constructed by a N-tap FIR filter

With De-EmphasisWithout De-Emphasis

Appendix: Rx Equalizer – CTLE

CTLE(Continuous Time Linear Equalizer)

- CTLE is an amplifier with Analog Filter
- CTLE can be modeled by transfer function (Poles/Zeros)

KEYSIGHT TECHNOLOGIES