

3D Package Model for Electromagnetic Field Solver used in More High-Speed Channel Simulation

Masaki Kirinaka

mkirinaka@fujitsu.com FUJITSU INTERCONNECT TECHNOLOGIES LIMITED

Asian Virtual IBIS Summit Tokyo, JAPAN November 12, 2021

Agenda

- Background
- Verification of 3D Package model superiority
- Challenges for 3D Package model
- Summary

In Optical Transmission System Board Development

Board configuration

Background

In Optical Transmission System Board Development

25Gbps Line Channel Simulation

- Against expectation, Simulation results were bad.
- Review the Analog Channel Model.
 Changed S-parameter extraction method.

Background

In Optical Transmission System Board Development

25Gbps Line Channel Simulation

Background

- The interconnect structure of the Optical Transmission System Board is like that of Chip, Package, and Board.
- So, it seems that more accurate simulation results can be obtained by extracting the S-parameter with the Package integrated with the Board.
- At that time, the Package requires a model for 3D ELECTROMAGNETIC FIELD SIMULATOR.
- Therefore, we verified the superiority of using a 3D Model for Package by simulating with a simple 3D Model of Package and Board.
- Also, we examined **the issues of 3D Models**.

FUJITSU

FUJITSU

Verification Case

- Case2 (More accurate simulation result) vs. Case1 (Simulation result by conventional topology)
- What is the difference between Case1 and Case2?

Case	Analog Channel Model Configuration	Verification Items		
		Insertion Loss Return Loss	Zdiff	Eye Pattern
1	Package-only 3D Model 3D Model Conventional Simulation Topology	SDD21 SDD11	TDR	5Gbps NRZ
				10Gbps NRZ
				16Gbps NRZ
				28Gbps NRZ
				56Gbps NRZ
				56Gbps PAM4
2	Integrated Package and Board 3D model	SDD21 SDD11	TDR	5Gbps NRZ
				10Gbps NRZ
				16Gbps NRZ
				28Gbps NRZ
				56Gbps NRZ
				56Gbps PAM4

FUJITSU

Copyright 2021 FUJITSU INTERCONNECT TECHNOLOGIES LIMITED

FUJITSU

- Case1 (Package-only + Board-only) has a larger Impedance mismatch than Case2 (Integrated Package and Board) at the connection between the Package and the Board.
- Therefore, Case1 has worse Insertion Loss and Reflection Loss than Case2.
- Also, the higher the Data Rate, the smaller the Eye opening in Case1 than in Case2.
- In the future, when the Data Rate becomes higher (f_{Nyquist} ≥ 28GHz, for example, 112G, 224G), it may be necessary to simulate with the extracted S-parameter by integrated Package and Board in order to improve the analysis accuracy.
- Therefore, it may be necessary to add a standard for 3D Package model to IBIS specification in the future.

Notes

New Subparameter "FILE_3D" may be needed in the future.

3) One of either the File_TS or File_IBIS-ISS subparameters is required.

Table 46 – Interconnect Modeling Keywords and Subparameters

Keyword or Subparameter

Challenges for 3D Package model

- Package design and material property values are revealed.
- 3D ELECTROMAGNETIC FIELD SIMULATOR is required.
- The analysis result differs depending on the ELECTROMAGNETIC FIELD SIMULATOR settings (Number of meshes, Analysis frequency range, Boundary conditions, Port settings).
- Simulation time is longer than S-parameter.

etc.

There seems to be many challenges for realization.

Summary

- We investigated the superiority of the 3D Package model.
- At higher data rates (112G, 224G), the 3D Package model helps improve analysis accuracy.
- On the other hand, the 3D Package model has many challenges (standardization and usage).

References

 "IBIS (I/O Buffer Information Specification) Version 7.0", IBIS Open Forum 2019 http://www.ibis.org/ver7.0/

FUJTSU

shaping tomorrow with you