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Power Supply Induced Jitter (PSIJ) 
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Power supply induced jitter (PSIJ): 
• The time variation in the output transition edges from ideal positions due to the voltage 

fluctuations on power rail. 

Vin 
Vout 

Vdd 

Tp0 

Vin 
Vout 

Vdd 

Tp0 

• The Vcc noise can take effect during the propagation delay time range; 

• The influence is accumulated, just considering instantaneous voltage value is not accurate. 
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Limitations of the Current Power-Aware IBIS Model 
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• Cannot account for the delay change caused by power noise correctly. 

 Example: an inverter chain output, change 

power voltage to 1.7/1.8/1.9V, respectively  

SPICE Results 

Power-aware IBIS model 

Results 
(ver5.1,generated with EDA tool) 

… 

Vpulse 

VDC 

1.7/1.8/1.9V 
Vout 
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Limitations of the Current Power-Aware IBIS Model 
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• Power-aware IBIS model considers gate modulation effect, ratio modification on 

Ku, Kd based on power rail voltage value 

Source: “BIRD 98 and ST ‘Gate Modulation’ Convergence”, IBIS 

Open Forum Teleconference, Jan. 26th, 2007 

http://www.ibis.org/docs/BIRD98&ST_Proposal_Convergence.ppt 
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• The ratio modification Ksspd, Ksspu on Ku, Kd is only a function of Vpd (Vcc-Vout) or 

Vpu  (Vout-Vgnd), it cannot reflect the effect of power rail voltage noise on switching 

edge timing change  

Previous method on modification of Ku, Kd does not consider the time averaged effect; 
Source: Behavioral modeling of jitter due to power supply noise for input/output buffers (US Patent 9842177B1) 
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Previous Proposed Behavior Model 
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• Modify Ku(t), Kd(t) as a function of time averaged power rail voltage Vcc(t); 

introduce correction coefficient B and A as a function of time  
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Linear fitting 

coefficient 

Ku, Kd under 

nominal Vcc 
Quadratic fitting 

coefficient 

Averaged Vcc(t) after the 

switching event happens; 

Input switching happens, time=0 

t, time elapsed since switching 

Ku(t)*Iu(V1)+ Kd(t)*Id(V1)=Iout(V1) 

Ku(t)*Iu(V2)+ Kd(t)*Id(V2)=Iout(V2) 

• 2 equations, 2 unknowns' algorithm to extract Bu(t), Au(t) and Bd(t), Ad(t) 

2
_ max _ _0 0 0
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• 2 equations, 2 unknowns' algorithm to extract Ku(t), Kd(t) for typ/min/max 

Achieved by adding delay elements 

that store  

• The time of switching edges  

• Time averaged Vcc since 

switching event happens 

• Ku/Kd correction coefficients B and A 

are related to Process, Voltage and 

Temperature instead of only the supply 

voltage fluctuation. 

Y. Sun and C. Hwang, "Improving Power Supply Induced Jitter Simulation Accuracy for IBIS Model," 2021 IEEE International Joint EMC/SI/PI and EMC 

Europe Symposium, 2021, pp. 1127-1132, doi: 10.1109/EMC/SI/PI/EMCEurope52599.2021.9559139. 
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DC Jitter Sensitivity 
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*Jitter sensitivity @ DC 

Frequency dependency due to PSRR (Power Supply Rejection Ratio)  

Frequency dependency due to time averaged effect 

(already considered by averaging the Vcc) 

Jitter Impact( ) Jitter Sensitivity( ) ( )noisef f V f 

• Jitter sensitivity can be applied to calculate the total jitter 

Y. Sun, J. Lee and C. Hwang, "A Generalized Power Supply Induced Jitter Model Based on Power Supply Rejection Ratio Response," in IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, vol. 29, no. 6, pp. 1052-1060, June 2021, doi: 10.1109/TVLSI.2021.3072799. 
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Ku/Kd Modification Based on PSIJ Sensitivity 
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Ku/Kdmax/min(t) = Ku/Kdtyp(t ± DC Jitter sensitivity × ΔVdd) 

• Propose to use Jitter sensitivity to do modification 

 Should exclude the original IBIS effect. 

 Can include pre-driver PSIJ effect. 

—— typical Ku 

------ max Ku 

······ min Ku 

Δt = (Driver output PSIJ sensitivity – original IBIS PSIJ sensitivity + pre-driver PSIJ sensitivity) *  

(Vdd_max – Vdd_typ) 

Ku for output rising edge: 

Δt 
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Simulation Validation – Inverter Chain 

● 8 stage inverter chain with different load capacitance 
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M=1 M=2 M=4 M=8 M=16 M=32 M=64 M=128 

< All PMOS> 

pch_tn 

W = 2 um  

L = 180 nm 

< All NMOS> 

nch_tn 

W = 1 um  

L = 180 nm 

C_Load 

1pF/2pF/10pF 

180nm technology, nominal voltage 1.8V 

Vpulse 

VDC 

1.7/1.8/1.9V 
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Results Comparison – Inverter Chain Output Rising Edge 

10 

PSIJ Sensitivity (ps/V) 

Load 1pF to VSS Load 2pF to VSS Load 10pF to VSS 

SPICE 184.45 207 350 

Non-Power-aware IBIS  6.5 9.5 39.5 

Power-aware IBIS 35.5 54 217 

Proposed Algorithm 187 210.5 355 

Δ (to SPICE) 

Absolute 

diff 

(ps/V) 

% 

Absolute 

diff 

(ps/V) 

% 

Absolute 

diff 

(ps/V) 

% 

Non-Power-aware IBIS  177.95 96.48 197.5 95.41 310.9 88.71 

Power-aware IBIS 148.95 80.75 153 73.91 133 38 

Proposed Algorithm 2.55 1.38 3.5 1.69 5 1.43 

● 8 stage inverter chain with different load capacitance 

● DC power noise 1.7V/1.8V/1.9V 
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Results Comparison – Inverter Chain Output Falling Edge 
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PSIJ Sensitivity (ps/V) 

Load 1pF to VSS Load 2pF to VSS Load 10pF to VSS 

SPICE 193.91 194.16 188.71 

Non-Power-aware IBIS  -24.41 -36.07 -123.21 

Power-aware IBIS -25 -35 -135 

Proposed Model 188.95 186.75 175.85 

Δ (to SPICE) 

Absolute 

diff 

(ps/V) 

% 

Absolute 

diff 

(ps/V) 

% 

Absolute 

diff 

(ps/V) 

% 

Non-Power-aware IBIS  218.32 112.59 230.23 118.58 311.92 165.29 

Power-aware IBIS 218.91 112.89 229.16 118.03 323.71 171.53 

Proposed Model 4.96 2.56 7.41 3.82 12.86 6.81 

● 8 stage inverter chain with different load capacitance 

● DC power noise 1.7V/1.8V/1.9V 
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Output Waveform Comparison 
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SPICE model 

Power-aware IBIS model 

Proposed model compared 

with SPICE model 
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Simulation Validation -- DDRx DQ Tx Buffer 

• DDRx DQ Tx Buffer with Pre-driver 
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• VDDQ Sweep 0.85-1.35V 

• Typ Corner 

• R_Load = 50 ohm 

• VTT = VSS 

Nominal/Min/Max voltage = 1.1V/1.045V/1.155V  

https://ibis.org/atm_wip/archive/20211026/randywolff/Output%20Buffer%20PSIJ%20Analysis/Micron_PSIJ_Analysis_for_IBIS_ATM.pdf 

SPICE 

https://nam02.safelinks.protection.outlook.com/?url=https://ibis.org/atm_wip/archive/20211026/randywolff/Output%20Buffer%20PSIJ%20Analysis/Micron_PSIJ_Analysis_for_IBIS_ATM.pdf&data=04|01|dingyif@mst.edu|b80301296d9b461bae0808da168ccfa0|e3fefdbef7e9401ba51a355e01b05a89|0|0|637847091727765147|Unknown|TWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D|3000&sdata=4EBdvoM2qHthg%2BaXAhdM9iP%2B8H07i7twMlpbXCcubiY%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https://ibis.org/atm_wip/archive/20211026/randywolff/Output%20Buffer%20PSIJ%20Analysis/Micron_PSIJ_Analysis_for_IBIS_ATM.pdf&data=04|01|dingyif@mst.edu|b80301296d9b461bae0808da168ccfa0|e3fefdbef7e9401ba51a355e01b05a89|0|0|637847091727765147|Unknown|TWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D|3000&sdata=4EBdvoM2qHthg%2BaXAhdM9iP%2B8H07i7twMlpbXCcubiY%3D&reserved=0
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Pre-driver Included in Model 
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SPICE transistor level simulation 

Input Pre-driver DDRx DQ Tx Buffer  Pad 

Input DDRx DQ Tx Buffer  Pad 

IBIS behavior model simulation can not simulate with pre-driver  

Input DDRx DQ Tx Buffer with pre-driver PSIJ effect included  Pad 

Proposed model simulation 
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Results Comparison – DDRx DQ Tx Buffer Output Rising  
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PSIJ Sensitivity (ps/V) 

Load 50 ohm to VSS 
Load 50 ohm to VDDQ 

(variable) 

Load 50 ohm to VDDQ 

(Fixed 1.1V) 

SPICE 156.65 134.17 95.45 

Non-Power-aware IBIS  15.45 38.18 6.36 

Power-aware IBIS 60 45.45 14.55 

Proposed Model 159.09 147.27 107.27 

Δ (to SPICE) 

Absolute error 

(ps/V) 
% 

Absolute error 

(ps/V) 
% 

Absolute error 

(ps/V) 
% 

Non-Power-aware IBIS  141.2 90.14 95.99 71.54 89.09 93.34 

Power-aware IBIS 96.65 61.70 88.72 66.13 80.9 84.76 

Proposed Model 2.44 1.56 13.1 8.9 11.82 12.38 

● DDRx DQ Tx Buffer with Pre-Driver 

● DC power noise 1.045V/1.1V/1.155V 
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Conclusion 

● A behavior model based on driver DC jitter sensitivity is proposed to improve 

the IBIS simulation accuracy in time domain. 

● Time averaged effect on power rail is considered. 

● Pre-driver PSIJ effect can be included in IBIS simulation. 
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