IBIS

(I/O Buffer Information Specification)

Version 4.1

Ratified ???

 I/O Buffer Information Specification (IBIS) Version 4.1 (August 1, 2003)

 IBIS is a standard for electronic behavioral specifications of integrated

 circuit input/output analog characteristics.

T A B L E O F C O N T E N T S

Section 1 GENERAL INTRODUCTION
Section 2 STATEMENT OF INTENT
Section 3 GENERAL SYNTAX RULES AND GUIDELINES
Section 4 FILE HEADER INFORMATION
Section 5 COMPONENT DESCRIPTION
Section 6 MODEL STATEMENT
Section 6a ... ADD SUBMODEL DESCRIPTION
Section 6b ... MULTI-LINGUAL MODEL EXTENSIONS
Section 7 PACKAGE MODELING
Section 8 ELECTRICAL BOARD DESCRIPTION
Section 9 NOTES ON DATA DERIVATION METHOD

Section 1 4
Section 2 5
Section 3 7
Section 4 9
Keyword: [IBIS Ver] 9
Keyword: [Comment Char] 9
Keyword: [File Name] 9
Keyword: [File Rev] 9
Keywords: [Date], [Source], [Notes], [Disclaimer], [Copyright] 10
Section 5 11
Keyword: [Component] 11
Keyword: [Manufacturer] 11
Keyword: [Package] 11
Keyword: [Pin] 12
Keyword: [Package Model] 13
Keywords: [Alternate Package Models], [End Alternate Package Models] 13
Keyword: [Pin Mapping] 14
Keyword: [Diff Pin] 17
Keyword: [Series Pin Mapping] 18
Keyword: [Series Switch Groups] 19
Keyword: [Model Selector] 20
Section 6 22
Keyword: [Model] 22
Keyword: [Model Spec] 26
Keyword: [Receiver Thresholds] 32
Keyword: [Add Submodel] 35
Keyword: [Driver Schedule] 35
Keyword: [Temperature Range] 38
Keyword: [Voltage Range] 38
Keyword: [Pullup Reference] 39
Keyword: [Pulldown Reference] 39
Keyword: [POWER Clamp Reference] 39
Keyword: [GND Clamp Reference] 40
Keyword: [External Reference] 40
Keywords: [TTgnd], [TTpower] 40
Keywords: [Pulldown], [Pullup], [GND Clamp], [POWER Clamp] 41
Keywords: [Rgnd], [Rpower], [Rac], [Cac] 44
Keywords: [On], [Off] 45
Keywords: [R Series], [L Series], [Rl Series], [C Series], [Lc Series] 46
[Rc Series] 46
Keyword: [Series Current] 47
Keyword: [Series MOSFET] 48
Keyword: [Ramp] 51
Keywords: [Rising Waveform], [Falling Waveform] 51
Keyword: [Test Data] 54
Keywords: [Rising Waveform Near], [Falling Waveform Near] 55
[Rising Waveform Far], [Falling Waveform Far] 55
[Diff Rising Waveform Near], [Diff Falling Waveform Near] 55
[Diff Rising Waveform Far], [Diff Falling Waveform Far] 55
Keyword: [Test Load] 56
Section 6a 59
Keyword: [Submodel] 60
Keyword: [Submodel Spec] 60
Keywords: [GND Pulse Table], [POWER Pulse Table] 62
Section 6b 73
Keywords: [External Model], [End External Model] 80
Keywords: [External Circuit], [End External Circuit] 95
Keywords: [Node Declarations], [End Node Declarations] 102
Keywords: [Circuit Call], [End Circuit Call] 103
Section 7 108
Keyword: [Define Package Model] 109
Keyword: [Manufacturer] 109
Keyword: [OEM] 109
Keyword: [Description] 109
Keyword: [Number Of Sections] 110
Keyword: [Number Of Pins] 110
Keyword: [Pin Numbers] 110
Keyword: [Model Data] 112
Keyword: [End Model Data] 113
Keywords: [Resistance Matrix], [Inductance Matrix], [Capacitance Matrix] 113
Keyword: [Row] 114
Keyword: [Bandwidth] 115
Keyword: [End Package Model] 117
Section 8 120
Keyword: [Begin Board Description] 121
Keyword: [Manufacturer] 121
Keyword: [Number Of Pins] 121
Keyword: [Pin List] 121
Keyword: [Path Description] 122
Keyword: [Reference Designator Map] 126
Keyword: [End Board Description] 127
Keyword: [End] 127
Section 9 128

```
|===============================================================================
===================================================================================
Section }
GENEERALINNTROD U C T I ON
==================================================================================
====================================================================================
This section gives a general overview of the remainder of this document.
Sections 2 and 3 contain general information about the IBIS versions and the general rules and guidelines. Several progressions of IBIS documents are referenced in Section 2 and in the discussion below. They are IBIS Version 1.1 (ratified August 1993), IBIS Version 2.1 (ratified as ANSI/EIA-656 in December 1995), IBIS Version 3.2 (ratified as ANSI/EIA-656-A in October 1999), IBIS Version 4.0 (ratified in July 2002), and this document, IBIS Version 4.1 (ratified in August 2003).
The functionality of IBIS follows in Sections 4 through 8. Sections 4 through 6 describe the format of the core functionality of IBIS Version 1.1 and the extensions in later versions. The data in these sections are contained in .ibs files. Section 7 describes the package model format of IBIS Version 2.1 and a subsequent extension. Package models can be formatted within .ibs files or can be formatted (along with the Section 4 file header keywords) as .pkg files. Section 8 contains the Electrical Board Description format of IBIS Version 3.2. Along with Section 4 header information, electrical board descriptions must be described in separate .ebd files.
Section 9 contains some notes regarding the extraction conditions and data requirements for IBIS files. This section focuses on implementation conditions based on measurement or simulation for gathering the IBIS compliant data.
```


===12

Section 2

```
    STA T EMENT O F I N T ENT
```


In order to enable an industry standard method to electronically transport IBIS Modeling Data between semiconductor vendors, EDA tool vendors, and end customers, this template is proposed. The intention of this template is to specify a consistent format that can be parsed by software, allowing EDA tool vendors to derive models compatible with their own products.

One goal of this template is to represent the current state of IBIS data, while allowing a growth path to more complex models / methods (when deemed appropriate). This would be accomplished by a revision of the base template, and possibly the addition of new keywords or categories.

Another goal of this template is to ensure that it is simple enough for semiconductor vendors and customers to use and modify, while ensuring that it is rigid enough for EDA tool vendors to write reliable parsers.

Finally, this template is meant to contain a complete description of the I / O elements on an entire component. Consequently, several models will need to be defined in each file, as well as a table that equates the appropriate buffer to the correct pin and signal name.

Version 4.0 of this electronic template was finalized by an industry-wide group of experts representing various companies and interests. Regular "EIA IBIS Open Forum" meetings were held to accomplish this task.

Commitment to Backward Compatibility. Version 1.0 is the first valid IBIS ASCII file format. It represents the minimum amount of I/O buffer information required to create an accurate IBIS model of common CMOS and bipolar I/O structures. Future revisions of the ASCII file will add items considered to be "enhancements" to Version 1.0 to allow accurate modeling of new, or other I/O buffer structures. Consequently, all future revisions will be considered supersets of Version 1.0, allowing backward compatibility. In addition, as modeling platforms develop support for revisions of the IBIS ASCII template, all previous revisions of the template must also be supported.

Version 1.1 update. The file "ver1_1.ibs" is conceptually the same as the 1.0 version of the IBIS ASCII format (ver1_0.ibs). However, various comments have been added for further clarification.

Version 2.0 update. The file "ver2_0.ibs" maintains backward compatibility with Versions 1.0 and 1.1. All new keywords and elements added in Version 2.0 are optional. A complete list of changes to the specification is in the IBIS Version 2.0 Release Notes document ("ver2_0.rn.txt").

Version 2.1 update. The file "ver2_1.ibs" contains clarification text changes, corrections, and two additional waveform parameters beyond Version 2.0 .

Version 3.0 update. The file "ver3_0.ibs" adds a number of new keywords and functionality. A complete list of functions can be found on eda.org under /pub/ibis/birds/birddir.txt showing the approved Buffer Issue Resolution Documents (BIRDs) that have been approved for Version 3.0.

Version 3.1 update. The file "ver3_1.ibs" contains a major reformatting of the document and a simplification of the wording. It also contains some new technical enhancements that were unresolved when Version 3.0 was approved.

Version 3.2 update. The file "ver3_2.ibs" adds more technical advances and also a number of editorial changes documented in 12 BIRDs and also in responses to public letter ballot comments.

Version 4.0 update. This file "ver4_0.ibs" adds more technical advances and a few editorial changes documented in 11 BIRDs.

Version 4.1 update. This file "ver4_1.ibs adds more technical advances and a few editorial changes documented in 5 BIRDs.


```
===============================================================================
================================================================================
```


Section 3

```
    GENERAL SYNTAX RULES AND GUIDELINES
```


This section contains general syntax rules and guidelines for ASCII IBIS files:

1) The content of the files is case sensitive, except for reserved words and keywords.
2) The following words are reserved words and must not be used for any other purposes in the document:

POWER - reserved model name, used with power supply pins,
GND - reserved model name, used with ground pins,
NC - reserved model name, used with no-connect pins,
NA - used where data not available,
CIRCUITCALL - used for circuit call references in Section 6b.
3) To facilitate portability between operating systems, file names used in the IBIS file must only have lower case characters. File names should have a basename of no more than twenty characters followed by a period ('.') , followed by a file name extension of no more than three characters. The file name and extension must use characters from the set (space, ' ', 0x20 is not included):

$$
\begin{aligned}
& \text { a b c def ghtik l m n o p q r st u v w x y z } \\
& \left.0123456789 _\wedge \$ \sim!\# \% \&-\{ \}\right)(@ 1-
\end{aligned}
$$

The file name and extension are recommended to be lower case on systems that support such names.
4) A line of the file may have at most 120 characters, followed by a line termination sequence. The line termination sequence must be one of the following two sequences: a linefeed character, or a carriage return followed by linefeed character.
5) Anything following the comment character is ignored and considered a comment on that line. The default "|" (pipe) character can be changed by the keyword [Comment Char] to any other character. The [Comment Char] keyword can be used throughout the file as desired.
6) Keywords must be enclosed in square brackets, [], and must start in column 1 of the line. No space or tab is allowed immediately after the opening bracket '[' or immediately before the closing bracket ']'. If used, only one space (' ') or underscore ('_') character separates the parts of a multi-word keyword.
7) Underscores and spaces are equivalent in keywords. Spaces are not allowed in subparameter names.
8) Valid scaling factors are:
$T=$ tera $k=$ kilo $n=$ nano

$$
\begin{array}{lll}
\mathrm{G}=\text { giga } & \mathrm{m}=\text { milli } & \mathrm{p}=\text { pico } \\
\mathrm{M}=\text { mega } & \mathrm{u}=\text { micro } & \mathrm{f}=\text { femto }
\end{array}
$$

When no scaling factors are specified, the appropriate base units are assumed. (These are volts, amperes, ohms, farads, henries, and seconds.) The parser looks at only one alphabetic character after a numerical entry, therefore it is enough to use only the prefixes to scale the parameters. However, for clarity, it is allowed to use full abbreviations for the units, (e.g., pF, nH, mA, mOhm). In addition, scientific notation IS allowed (e.g., 1.2345e-12).
9) The I-V data tables should use enough data points around sharply curved areas of the $I-V$ curves to describe the curvature accurately. In linear regions there is no need to define unnecessary data points.
10) The use of tab characters is legal, but they should be avoided as much as possible. This is to eliminate possible complications that might arise in situations when tab characters are automatically converted to multiple spaces by text editing, file transferring and similar software. In cases like that, lines might become longer than 120 characters, which is illegal in IBIS files.
11) Currents are considered positive when their direction is into the component.
12) All temperatures are represented in degrees Celsius.
13) Important supplemental information is contained in the last section, "NOTES ON DATA DERIVATION METHOD", concerning how data values are derived.
14) Only ASCII characters, as defined in ANSI Standard X3.4-1986, may be used in an IBIS file. The use of characters with codes greater than hexadecimal 07E is not allowed. Also, ASCII control characters (those numerically less than hexadecimal 20) are not allowed, except for tabs or in a line termination sequence. As mentioned in item 10 above, the use of tab characters is discouraged.

Section 4

Keyword: [Comment Char]

```
Required: No
Description: Defines a new comment character to replace the default "|" (pipe) character, if desired.
Usage Rules: The new comment character to be defined must be followed by the underscore character and the letters "char". For example: "|_char" redundantly redefines the comment character to be the pipe character. The new comment character is in effect only following the [Comment Char] keyword. The following characters MAY be used:
! " \# \$ \% \& ' ( ) * , : ; < > ? @ \^•\{ | \}~
Other Notes: The [Comment Char] keyword can be used throughout the file, as desired.
[Comment Char] |_char
=============================================================================2
Keyword: [File Name]
Required: Yes
Description: Specifies the name of the IBIS file.
Usage Rules: The file name must conform to the rules in paragraph 3 of Section 3, GENERAL SYNTAX RULES AND GUIDELINES. In addition, the file name must use the extension ".ibs", ".pkg", or or ".ebd". The file name must be the actual name of the file.
[File Name] ver4_1.ibs
```



```
Keyword: [File Rev]
Required: Yes
Description: Tracks the revision level of a particular .ibs file.
Usage Rules: Revision level is set at the discretion of the engineer defining the file. The following guidelines are recommended:
\(0 . x \quad\) silicon and file in development
1.x pre-silicon file data from silicon model only
```

	2.x file correlated to actual silicon measurements 3.x mature product, no more changes likely
[File Rev]	$1.0 \mid$ Used for .ibs file variations
Keywords: Required:	```[Date], [Source], [Notes], [Disclaimer], [Copyright] No```
Description:	Optionally clarifies the file.
Usage Rules:	The keyword arguments can contain blanks, and be of any format. The [Date] keyword argument is limited to a maximum of 40 characters, and the month should be spelled out for clarity.
	Because IBIS model writers may consider the information in these keywords essential to users, and sometimes legally required, design automation tools should make this information available. Derivative models should include this text verbatim. Any text following the [Copyright] keyword must be included in any derivative models verbatim.
[Date]	August 1, 2003 \| The latest file revision date
[Source]	Put originator and the source of information here. For example:
	From silicon level SPICE model at Intel.
	From lab measurement at IEI.
	Compiled from manufacturer's data book at Quad Design, etc.
[Notes]	Use this section for any special notes related to the file.
[Disclaimer]	This information is for modeling purposes only, and is not guaranteed. \| May vary by component
[Copyright]	Copyright 2003, XYZ Corp., All Rights Reserved

```
| ================================================================================
```


Section 5


```
names listed under the [Alternate Package Models] must follow
the rules of the package model names associated with the
[Package Model] keyword. The package model names correspond
to the names of package models defined by [Define Package
Model] keywords. EDA tools may offer users a facility
for choosing between the default package model and any of the
alternate package models, when analyzing occurances of the
[Component].
The package model named by [Package Model] can be optionally
repeated in the [Alternate Package Models] list of names.
```

```
[Alternate Package Models]
```

[Alternate Package Models]
|
|
208-pin_plastic_PQFP_package-even_mode | Descriptive names are shown
208-pin_plastic_PQFP_package-even_mode | Descriptive names are shown
208-pin_plastic_PQFP_package-odd_mode
208-pin_plastic_PQFP_package-odd_mode
208-pin_ceramic_PQFP_package-even_mode
208-pin_ceramic_PQFP_package-even_mode
208-pin_ceramic_PQFP_package-odd_mode
208-pin_ceramic_PQFP_package-odd_mode
|
|
[End Alternate Package Models]
[End Alternate Package Models]
==
==
Keyword: [Pin Mapping]
Required: No
Description: Used to indicate the power and/or ground buses to which a
givne driver, receiver or terminator is connected.
Sub-Params: pulldown_ref, pullup_ref, gnd_clamp_ref, power_clamp_ref,
ext_ref
Usage Rules: The [Pin Mapping] keyword names the connections between POWER
and/or GND pins and buffer and/or terminator voltage supply
references using unique bus labels. All buses with identical
labels are assumed to be connected with an ideal short. Each
label must be associated with at least one pin whose
model_name is POWER or GND. Bus labels must not exceed 15
characters.
Each line must contain either three, five or six entries.
Use the reserved word NC where an entry is required but a bus
connection is not made (see below).
The first column contains a pin name. Each pin name must
match one of the pin names declared in the [Pin] section of
the [Component].
For buffers and terminators, the remaining columns correspond
to the voltage supply references for the named pin. Each
[Model] supply reference is connected to a particular bus
through a bus label in the corresponding column.
The second column, pulldown_ref, designates the ground bus
connections for the buffer or termination associated with that
pin. The bus named under pulldown_ref is associated with the
[Pulldown] I-V table for non-ECL [Model]s. This is also the
bus associated with the [GND Clamp] I-V table and the [Rgnd]
model unless overridden by a label in the gnd_clamp_ref
column.
The third column, pullup_ref, designates the power bus

```
connection for the buffer or termination. The bus named under
pullup_ref is associated with the [Pullup] table for non-ECL
[Model]s (for ECL models, this bus is associated with the
[Pulldown table). This is also the bus label associated with
the [POWER Clamp] I-V table and the Rpower] model unless




```

 Off 2 /
 Off 1 /
 On 5 / Crossbar switch straight through connection
On 6 / Crossbar cross over connection
Off 5 6 / | Crossbar open switches
Keyword: [Model Selector]
Required: No
Description: Used to pick a [Model] from a list of [Model]s for a pin which
uses a programmable buffer.
Usage Rules: A programmable buffer must have an individual [Model] section
for each one of its modes used in the .ibs file. The names of
these [Model]s must be unique and can be listed under the
[Model Selector] keyword and/or pin list. The name of the
[Model Selector] keyword must match the corresponding model
name listed under the [Pin] or [Series Pin Mapping] keyword
and must not contain more than 20 characters. A .ibs file
must contain enough [Model Selector] keywords to cover all of
the model selector names specified under the [Pin] and [Series
Pin Mapping] keywords.
The section under the [Model Selector] keyword must have two
fields. The two fields must be separated by at least one
white space. The first field lists the [Model] name (up to 20
characters long). The second field contains a short
description of the [Model] shown in the first field. The
contents and format of this description is not standardized,
however it shall be limited in length so that none of the
descriptions exceed the 80-character length of the line that
it started on. The purpose of the descriptions is to aid the
user of the EDA tool in making intelligent buffer mode
selections and it can be used by the EDA tool in a user
interface dialog box as the basis of an interactive buffer
selection mechanism.
The first entry under the [Model Selector] keyword shall be
considered the default by the EDA tool for all those
pins which call this [Model Selector].
The operation of this selection mechanism implies that a group
of pins which use the same programmable buffer (i.e., model
selector name) will be switched together from one [Model] to
another. Therefore, if two groups of pins, for example an
address bus and a data bus, use the same programmable buffer,
and the user must have the capability to configure them
independently, one can use two [Model Selector] keywords with
unique names and the same list of [Model] keywords; however,
the usage of the [Model Selector] is not limited to these
examples. Many other combinations are possible.

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline [Pin] & signal_name & model_name & R_pin & L_pin & C_pin \\
\hline 1 & RAS0\# & Progbufferl & 200.0m & 5.0nH & 2.0pF \\
\hline 2 & EN1\# & Input1 & NA & 6.3 nH & NA \\
\hline 3 & A0 & 3-state & & & \\
\hline 4 & D0 & Progbuffer2 & & & \\
\hline 5 & D1 & Progbuffer2 & 320.0 m & 3.1nH & 2.2 pF \\
\hline 6 & D2 & Progbuffer2 & & & \\
\hline 7 & RD\# & Input2 & 310.0 m & 3.0nH & 2.0 pF \\
\hline \multicolumn{6}{|l|}{} \\
\hline 18 & Vcc3 & POWER & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{|} \\
\hline OUT_2 & 2 mA buffer & without slew & e contr & & \\
\hline OUT_-4 & 4 mA buffer & without slew & ce contr & & \\
\hline OUT_6 & 6 mA buffer & without slew & te contr & & \\
\hline OUT_4S & 4 mA buffer & with slew ra & control & & \\
\hline OUT_6S & 6 mA buffer & with slew ra & control & & \\
\hline & Selector] & & & & \\
\hline \multicolumn{2}{|l|}{[Model Selector]} & Progbuffer2 & & & \\
\hline OUT_2 & 2 mA buffer & without slew & e contr & & \\
\hline OUT_6 & 6 mA buffer & without slew & te contr & & \\
\hline OUT_6S & 6 mA buffer & with slew ra & control & & \\
\hline OUT_8S & 8 mA buffer & with slew ra & control & & \\
\hline OUT_10S & - 10 mA buffer & with slew ra & control & & \\
\hline
\end{tabular}

```

=== (
Section }
MODELLSTATEMENT
==
==
Keyword: [Model]
Required: Yes
Description: Used to define a model, and its attributes.
Sub-Params: Model_type, Polarity, Enable, Vinl, Vinh, C_comp,
C_comp_pullup, C_comp_pulldown, C_comp_power_clamp,
C_comp_gnd_clamp, Vmeas, Cref, Rref, Vref
Usage Rules: Each model type must begin with the keyword [Model]. The
model name must match the one that is listed under a [Pin],
[Model Selector] or [Series Pin Mapping] keyword and must
not contain more than 20 characters. A .ibs file must
contain enough [Model] keywords to cover all of the model
names specified under the [Pin], [Model Selector] and [Series
Pin Mapping] keywords, except for those model names that use
reserved words (POWER, GND and NC).
Model_type must be one of the following:
Input, Output, I/O, 3-state, Open drain, I/O_open_drain,
Open_sink, I/O_open_sink, Open_source, I/O_open_source,
Input_ECL, Output_ECL, I/O_ECL, 3-state_ECL, Terminator,
Series, and Series_switch.
For true differential models documented under Section 6b,
Model_type must be one of the following:
Input_diff, Output_diff, I/O_diff, and 3-state_diff
Special usage rules apply to the following. Some
definitions are included for clarification:
Input These model types must have Vinl and Vinh
I/O
I/O_open_drain
I/O_open_sink
I/O_open_source
Input_ECL
I/O_ECL
Terminator This model type is an input-only model
that can have analog loading effects on the
circuit being simulated but has no digital
logic thresholds. Examples of terminators
are: capacitors, termination diodes, and
pullup resistors.

```

the simulator use the value of C_comp simultaneously with the values of the other C_comp_* subparameters.

C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp are intended to represent the parasitic capacitances of those structures who's I-V characteristics are described by the [Pullup], [Pulldown], [POWER Clamp] and [GND Clamp] I-V tables. For this reason, the simulator should generate a circuit netlist so that, if defined, each of the C_comp_* capacitors are connected in parallel with their corresponding I-V tables, whether or not the I-V table exists. That is, the C_comp_* capacitors are positioned between the signal pad and the nodes defined by the [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference] and [GND Clamp Reference] keywords, or the [Voltage Range] keyword and GND.

The C_comp and C_comp_* subparameters define die capacitance. These values should not include the capacitance of the package. C_comp and C_comp_* are allowed to use "NA" for the min and max values only.

The Polarity, Enable, Vinl, Vinh, Vmeas, Cref, Rref, and Vref subparameters are optional.

Also, optional Rref_diff and Cref_diff subparameters discussed further in Section 6b support the true differential buffer timing test loads. They are used only when the [Diff Pin] keyword connects two models, and each buffer references the same model. The Rref_diff and Cref_diff subparameters can be used with the Rref, Cref, and Vref subparameters for a combined differential and signal-ended timing test load. Single-ended test loads are permitted for differential applications.

The Rref_diff and Cref_diff are recognized only when the [Diff Pin] keyword connects the models. This applies for the true differential buffers in Section 6b and also for differential buffers using identical single-ended models.

The Polarity subparameter can be defined as either Non-Inverting or Inverting, and the Enable subparameter can be defined as either Active-High or Active-Low.

The Cref and Rref subparameters correspond to the test load that the semiconductor vendor uses when specifying the propagation delay and/or output switching time of the model. The Vmeas subparameter is the reference voltage level that the semiconductor vendor uses for the model. Include Cref, Rref, Vref, and Vmeas information to facilitate board-level timing simulation. The assumed connections for Cref, Rref, and Vref are shown in the following diagram:



the hysteresis threshold rules become effective. Otherwise the standard threshold subparameters remain in effect. The hysteresis thresholds shall be at the Vinh+ and Vinh- values for a low-to-high transition, and at the Vinl+ and Vinlvalues for a high-to-low transition.

Receiver Voltage with Hysteresis Thresholds

Vinh+
Vinh-


Time -->
S_overshoot_high, S_overshoot_low rules:

The static overshoot subparameters provide the DC voltage values for which the model is no longer guaranteed to function correctly. Typically these are voltages that would cause the physical component to be destroyed.

D_overshoot_high, D_overshoot_low, D_overshoot_time rules:

The dynamic overshoot values provide a time window during which the overshoot may exceed the static overshoot limits but be below the dynamic overshoot limits. D_overshoot time is required for dynamic overshoot testing. In addition, if D_overshoot_high is specified, then S_overshoot_high is necessary for testing beyond the static limit. Similarly, if D_overshoot_low is specified, then S_overshoot_low is nēcessary for testing beyond the stātic limit.



```

Keyword: [Receiver Thresholds]
Required: No
Sub-Params: Vth, Vth_min, Vth_max, Vinh_ac, Vinh_dc, Vinl_ac, Vinl_dc,
Threshold_sensitivity, Reference_supply, Vcross_low,
Vcross_highh, Vdiff_ac, Vdiff_dc, Tslew_ac, Tdiff

```

```

 receiver input thresholds as well as their sensitivity to
 variations in a referenced supply. The subparameters are
 defined as follows:
 Vth, Vth_min and Vth_max are the ideal input threshold
 voltages at which the output of a digital logic receiver
 changes state. Vth is the nominal input threshold voltage
 under the voltage, temperature and process conditions that
 define 'typ'. Vth_min is the minimum input threshold
 voltage at 'typ' conditions while Vth_max is the maximum
 input threshold voltage at 'typ' conditions.
 Vinh_ac is the voltage that a low-to-high going input waveform must reach in order to guarantee that the receiver's output has changed state. In other words, reaching Vinh_ac is sufficient to guarantee a receiver state change. Vinh_ac is expressed as an offset from Vth.
Vinh_dc is the voltage that an input waveform must remain above (more positive than) in order to guarantee that a receiver output will NOT change state. Vinh_dc is expressed as an offset from Vth.
Vinl_ac is the voltage that a high-to-low going input waveform must reach in order to guarantee that the receiver's output has changed state. In other words, reaching Vinl_ac is sufficient to guarantee a receiver state change. Vinl_ac is expressed as an offset from Vth.
Vinl_dc is the voltage that an input waveform must remain below (more negative than) in order to guarantee that a receiver's output will NOT change state. Vinl_dc is expressed as an offset from Vth.
Threshold_sensitivity is a unit less number that specifies how Vth varies with respect to the supply voltage defined by the Reference_supply subparameter. Threshold_sensitivity is defined as:
change in input threshold voltage

```

``` change in referenced supply voltage
Threshold_sensitivity must be entered as a whole number or decimal, not as a fraction.
Reference_supply indicates which supply voltage Vth tracks; i.e., it indicates which supply voltage change causes a change in input threshold. The legal arguments to this subparameter are as follows:
Power_clamp_ref The supply voltage defined by the
```

```
 [POWER Clamp Reference] keyword
Gnd_clamp_ref The supply voltage defined by the
 [GND Clamp Reference] keyword
Pullup_ref The supply voltage defined by the
 [Pullup reference] keyword
 The supply voltage defined by the
 [Pulldown reference] keyword
Ext_ref The supply voltage defined by the
 [External Reference] keyword
Tslew_ac and Tdiffslew_ac measures the absolute difference in time between the point at which an input waveform crosses Vinl_ac and the point it crosses Vinh_ac. The purpose of this parameter is to document the maximum amount of time an input signal may take to transition between Vinh_ac and Vinl_ac and still allow the device to meet its input setup and hold specifications. Tslew_ac is the parameter used for single ended receivers while Tdiffslew_ac must be used for receivers with differential inputs.
Vcross_low is the least positive voltage at which a differētial receivers' input signals may cross while switching and still allow the receiver to meet its timing and functional specifications. Vcross_low is specified with respect to 0 V .
Vcross_high is the most positive voltage at which a differential receivers' input signals may cross while switching and still allow the receiver to meet its timing and functional specifications. Vcross_high is specified with respect to 0 V .
Vdiff_dc is the minimum voltage difference between the inputs of a differential receiver that guarantees the receiver will not change state.
Vdiff_ac is the minimum voltage difference between the input's of a differential receiver that guarantees the receiver will change state.
Usage Rules: The [Receiver Thresholds] keyword is valid if the model type includes any reference to input or I/O. For single ended receivers the Vinh_ac, Vinh_dc, Vinl_ac, Vinh_dc, Vth and Tslew_ac subparameters are required and override the Vinh, Vinl, Vinh+/- and Vinl+/- subparameters declared under the [Model] or [Model Spec] keywords. For single ended receivers the Vth_min, Vth_max, Threshold_sensitivity and Reference_supply subparameters āre optional. However, if the Threshold_sensitivity subparameter is present then the Reference_supply subparameter must also be present.
For differential receivers (i.e., the [Receiver Thresholds] keyword is part of a [Model] statement that describes a pin listed in the [Diff Pin] keyword) then the Vcross_low, Vcross_high, Vdiff_ac, Vdiff_dc and Tdiffslew_ac subparameters are required. The rest of the subparameters are not applicable. The Vdiff_ac and Vdiff_dc values override the
```

```
value of the vdiff subparameter specified by the [Diff Pin] keyword. Note that Vcross_low and Vcross_high are valid over the device's minimum and maximum operating conditions.
Subparameter Usage Rules:
Numerical arguments are separated from their associated subparameter by an equals sign (=); white space around the equals sign is optional. The argument to the Reference_supply subparameter is separated from the subparameter by white space.
Vth at Minimum or Maximum Operating Conditions:
As described above, the Vth_min and Vth_max subparameters define the minimum and maximum input threshold values under typical operating conditions. There is no provision for directly specifying Vth under minimum or maximum operating conditions. Instead, these values are calculated using the following equation:
Vth(min/max) = Vth* + [(Threshold_sensitivity) X
(change in supply voltage)]
where Vth* is either Vth, Vth min or Vth max as appropriate, and the supply voltage is the one indicated by the Reference_Supply subparameter.
A basic 3.3 V single ended receiver using only the required subparameters.
[Receiver Thresholds]
Vth \(=1.5 \mathrm{~V}\)
Vinh_ac \(=+225 \mathrm{mV}\)
Vinh_dc \(=+100 \mathrm{mV}\)
Vinl_ac \(=-225 \mathrm{mV}\)
Vinl_dc \(=-100 \mathrm{mV}\)
Tslew_ac = 1.2ns
A single ended receiver using an external threshold reference. In this
case the input threshold is the external reference voltage so
Threshold_sensitivity equals 1.
[Receiver Thresholds]
Vth \(=1.0 \mathrm{~V}\)
Threshold_sensitivity = 1
Reference_Supply Ext_ref
Vinh_ac \(=+200 \mathrm{mV}\)
Vinh_dc \(=+100 \mathrm{mV}\)
Vinl_ac \(=-200 \mathrm{mV}\)
Vinl_dc \(=-100 \mathrm{mV}\)
Tslew_ac \(=400 \mathrm{ps}\)
A fully specified single ended 3.3 V CMOS receiver
[Receiver Thresholds]
\(\mathrm{Vth}=1.5 \mathrm{~V}\)
Vth min \(=1.45 \mathrm{~V}\)
Vth_max \(=1.53 \mathrm{~V}\)
Threshold_sensitivity = 0.45
Reference_supply Power_clamp_ref
```

```
Vinh_ac = +200mV
Vinh_dc = +100mV
Vinl_ac = -200mV
Vinl_dc = -100mV
Tslew_ac = 400ps
 A differential receiver
[Receiver Thresholds]
Vcross_low = 0.65V
Vcross_high = 0.90V
Vdiff \overline{ac = +200mV}
Vdiff_dc = +100mV
Tdiffslew_ac = 200ps
==
Keyword: [Add Submodel]
Required: No
Description: References a submodel to be added to an existing model.
Usage Rules: The [Add Submodel] keyword is invoked within a model to add
the functionality that is contained in the submodel or list of
 submodels in each line that follows. The first column
 contains the submodel name. The second column contains a
 submodel mode under which the submodel is used.
 If the top-level model type is one of the I/O or 3-state
 models, the submodel mode may be Driving, Non-Driving, or All.
 For example, if the submodel mode is Non-Driving, then the
 submodel is used only in the high-Z state of a 3-state model.
 Set the submodel mode to All if the submodel is to be used for
 all modes of operation.
 The submodel mode cannot conflict with the top-level model
 type. For example, if the top-level model type is an Open or
 Output type, the submodel mode cannot be set to Non-Driving.
 Similarly, if the top-level model type is Input, the submodel
 mode cannot be set to Driving.
 The [Add Submodel] keyword is not defined for Series or
 Series_switch model types.
 Refer to the ADD SUBMODEL DESCRIPTION section in this document
 for the descriptions of available submodels.
[Add Submodel]
| Submodel_name Mode
Bus_Hold_1 Non-Driving | Adds the electrical characteristics of
 [Submodel] Bus_Hold_1 for receiver or
 high-Z mode on\}y
Dynamic_clamp_1 All | Adds the Dynmanic_clamp_1 model for
 all modes of operation.
```



```
 Keyword: [Driver Schedule]
 Required: No
 Description: Describes the relative model switching sequence for referenced
 models to produce a multi-staged driver.
Usage Rules: The [Driver schedule] keyword establishes a hierarchical order
```

between models and should be placed under the [Model] which acts as the top-level model. The scheduled models are then referenced from the top-level model by the [Driver Schedule] keyword.

When a multi-staged buffer is modeled using the [Driver Schedule] keyword, all of its stages (including the first stage, or normal driver) have to be modeled as scheduled models.

If there is support for this feature in a EDA tool, the [Driver Schedule] keyword will cause it to use the [Pulldown], [Pulldown Reference], [Pullup], [Pullup Reference], [Voltage Range], [Ramp], [Rising Waveform] and [Falling Waveform] keywords from the scheduled models instead of the top-level model, according to the timing relationships described in the [Driver Schedule] keyword. Consequently, the keywords in the above list will be ignored in the top-level model. Also, all other keywords not shown in the above list will be ignored in the scheduled model(s).

However, both the top-level and the scheduled model(s) have to be complete models, i.e., all of the required keywords must be present and follow the syntactical rules.

For backwards compatibility reasons and for EDA tools which do not support multi-staged switching, the keywords in the above list can be used in the top-level [Model] to describe the overall characteristics of the buffer as if it was a composite model. It is not guaranteed, however, that such a top-level model will yield the same simulation results as a full multi-stage model. It is recommended that a "golden waveform" for the device consisting of a [Rising Waveform] table and a [Falling Waveform] table be supplied in the top-level model to serve as a reference for validation.

Even though some of the keywords are ignored in the scheduled model, it may still make sense in some cases to supply correct data with them. One such situation would arise when a [Model] is used both as a regular top-level model as well as a scheduled model.

The [Driver Schedule] table consists of five columns. The first column contains the model names of other models that exists in the .ibs file. The remaining four columns describe delays: Rise_on_dly, Rise_off_dly, Fall_on_dly, and Fall_off_dly. The $t=0$ time of each delay is the event when the EDA tool's internal pulse initiates a rising or falling transition. All specified delay values must be equal to or greater than 0. There are only five valid combinations in which these delay values can be defined:

1)	Rise_on_dly	with	Fall_on_dly
2)	Rise_off_dly	with	Fall_off_dly
3)	Rise_on_dly	with	Rise_off_dly
4)	Fall_on_dly	with	Fall_off_dly
5)	All four delays defined		
	(be careful about correct sequencing)		

The four delay parameters have the meaning as described below. (Note that this description applies to buffer types which have both pullup and pulldown structures. For those buffer types which have only a pullup or pulldown structure, the description for the missing structure can be omitted.)

Rise_on_dly is the amount of time that elapses from the internal simulator pulse initiating a RISING edge to the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLUP device $O N$, and the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLDOWN device OFF (if they were not already turned ON and OFF, respectively, by another event).

Rise_off_dly is the amount of time that elapses from the internal simulator pulse initiating a RISING edge to the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLUP device OFF, and the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLDOWN device ON (if they were not already turned ON and OFF, respectively, by another event).

Fall_on_dly is the amount of time that elapses from the internal simulator pulse initiating a FALLING edge to the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLDOWN device $O N$, and the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLUP device OFF (if they were not already turned ON and OFF, respectively, by another event).

Fall_off_dly is the amount of time that elapses from the internal simulator pulse initiating a FALLING edge to the $t=0$ time of the waveform or ramp that turns the $I-V$ table of the PULLDOWN device OFF, and the $t=0$ time of the waveform or ramp that turns the I-V table of the PULLUP device ON (if they were not already turned ON and OFF, respectively, by another event).

Note that some timing combinations may only be possible if the two halves of a complementary buffer are modeled separately as two open_* models.

Use 'NA' when no delay value is applicable. For each scheduled model the transition sequence must be complete, i.e., the scheduled model must return to its initial state.

No [Driver Schedule] table may reference a model which itself has within it a [Driver Schedule] keyword.

Other Notes: The added models typically consist of Open_sink (Open_drain) or Open_source models to provide sequentially increased drive strengths. The added drive may be removed within the same transition for a momentary boost or during the opposite transition.

The syntax also allows for reducing the drive strength.

```
 Note that the Rise_on_dly, Rise_off_dly, Fall_on_dly,
 Fall_off_dly parameters are single value parameters, so
 typical, minimum and maximum conditions cannot be described
 with them directly. In order to account for those effects,
 one can refer to the fastest waveform table with the delay
 number and then insert an appropriate amount of horizontal
 lead in section in those waveforms which need more delay.
 Notice that the C_comp parameter of a multi-stage buffer is
 defined in the top-level model. The value of C_comp
 therefore includes the total capacitance of the entire
 buffer, including all of its stages. Since the rising and
 falling waveform measurements include the effects of
 C_comp, each of these waveforms must be generated with the
 total C_comp present, even if the various stages of the
 buffer are characterized individually.
 Note: In a future release, the [Driver Schedule] keyword may
 be replaced by a newer method of specification that is
 consistent with some other planned extensions. However, the
 [Driver Schedule] syntax will continue to be supported.
[Driver Schedule]
```




```
 Keyword: [Temperature Range]
 Required: Yes, if other than the preferred 0, 50, 100 degree Celsius
 range
 Description: Defines the temperature range over which the model is to
 operate.
 Usage Rules: List the actual die temperatures (not percentages) in the typ,
 min, max format. "NA" is allowed for min and max only.
 Other Notes: The [Temperature Range] keyword also describes the temperature
 range over which the various I-V tables and ramp rates were
 derived. Refer to NOTES ON DATA DERIVATION METHODS for rules
 on which temperature values to put in the 'min' and 'max'
 columns.
```



```
 Keyword: [Voltage Range]
 Required: Yes, if [Pullup Reference], [Pulldown Reference], [POWER
 Clamp Reference], and [GND Clamp Reference] are not present
Description: Defines the power supply voltage tolerance over which the
```




and 10 V means 10 V below Vcc, which is -5 V with respect to ground. Vcc-relative data is necessary to model a pullup structure properly, since the output current of a pullup structure depends on the voltage between the output and Vcc pins and not the voltage between the output and ground pins. Note that the [GND Clamp] I-V table can include quiescent input currents, or the currents of a 3-stated output, if so desired.

When tabulating data for ECL models, the data in the [Pulldown] table is measured with the output in the 'logic low' state. In other words, the data in the table represents the I-V characteristics of the output when the output is at the most negative of its two logic levels. Likewise, the data in the [Pullup] table is measured with the output in the 'logic one' state and represents the I-V characteristics when the output is at the most positive logic level. Note that in BOTH of these cases, the data is referenced to the Vcc supply voltage, using the equation: Vtable = Vcc - Voutput.

Monotonicity Requirements:
To be monotonic, the I-V table data must meet any one of the following 8 criteria:

1- The CURRENT axis either increases or remains constant as the voltage axis is increased.
2- The CURRENT axis either increases or remains constant as the voltage axis is decreased.
3- The CURRENT axis either decreases or remains constant as the voltage axis is increased.
4- The CURRENT axis either decreases or remains constant as the voltage axis is decreased.

5- The VOLTAGE axis either increases or remains constant as the current axis is increased.
6- The VOLTAGE axis either increases or remains constant as the current axis is decreased.
7- The VOLTAGE axis either decreases or remains constant as the current axis is increased.
8- The VOLTAGE axis either decreases or remains constant as the current axis is decreased.

An IBIS syntax checking program shall test for non-monotonic data and provide a maximum of one warning per I-V table if non-monotonic data is found. For example:
"Warning: Line 300, Pulldown I-V table for model DC040403 is non-monotonic! Most simulators will filter this data to remove the non-monotonic data."

It is also recognized that the data may be monotonic if currents from both the output stage and the clamp diode are added together as most simulators do. To limit the complexity of the IBIS syntax checking programs, such programs will conduct monotonicity testing only on one $I-V$ table at a time.

It is assumed that the simulator sums the clamp tables together with the appropriate [Pullup] or [Pulldown] table


```
[GND Clamp]
\begin{tabular}{|crrr}
Voltage & I (typ) & I (min) & I (max) \\
& & & \\
-5.0 V & -3900.0 m & -3800.0 m & -4000.0 m \\
-0.7 V & -80.0 m & -75.0 m & -85.0 m \\
-0.6 V & -22.0 m & -20.0 m & -25.0 m \\
-0.5 V & -2.4 m & -2.0 m & -2.9 m \\
-0.4 V & 0.0 m & 0.0 m & 0.0 m \\
5.0 V & 0.0 m & 0.0 m & 0.0 m \\
& & & \\
[POWER Clamp] & & & \\
& & & \\
Voltage & I (typ) & I (min) & I (max) \\
& & & \\
-5.0 V & 4450.0 m & NA & NA \\
-0.7 V & 95.0 m & NA & NA \\
-0.6 V & 23.0 m & NA & NA \\
-0.5 V & 2.4 m & NA & NA \\
-0.4 V & 0.0 m & NA & NA \\
0.0 V & 0.0 m & NA & NA
\end{tabular}
 Note: Vtable = Vcc - Voutput
[POWER Clamp]
|
===
 Keywords: [Rgnd], [Rpower], [Rac], [Cac]
 Required: Yes, if they exist in the model
Description: The data for these keywords define the resistance values of
 Rgnd and Rpower connected to GND and the POWER pins,
 respectively, and the resistance and capacitance values for an
 AC terminator.
Usage Rules: For each of these keywords, the three columns hold the
 typical, minimum, and maximum resistance values. The three
 entries for R(typ), R(min), and R(max), or the three entries
 for C(typ), C(min), and C(max) must be placed on a single line
 and must be separated by at least one white space. All three
 columns are required under these keywords. However, data is
 only required in the typical column. If minimum and/or
 maximum values are not available, the reserved word "NA" must
 be used indicating the R(typ) or C(typ) value by default.
Other Notes: It should be noted that [Rpower] is connected to 'Vcc' and
 [Rgnd] is connected to 'GND'. However, [GND Clamp Reference]
 voltages, if defined, apply to [Rgnd]. [POWER Clamp
 Reference] voltages, if defined, apply to [Rpower]. Either or
 both [Rgnd] and [Rpower] may be defined and may coexist with
 [GND Clamp] and [POWER Clamp] tables. If the terminator
 consists of a series R and C (often referred to as either an
 AC or RC terminator), then both [Rac] and [Cac] are required.
 When [Rgnd], [Rpower], or [Rac] and [Cac] are specified, the
 Model_type must be Terminator.
```



In Series_switch models, [On] or [Off] must be positioned before any of the [R Series], [L Series], Rl Series], [C Series], [Lc Series], [Rc Series], [Series Current], and [Series MOSFET] keywords. There is no provision for any of these keywords to be defined once, but to apply to both states.
[On]
| ... On state keywords such as [R Series], [Series Current], [Series MOSFET]
[Off]
... Off state keywords such as [R Series], [Series Current]

Keywords: [R Series], [L Series], [Rl Series], [C Series], [Lc Series], [Rc Series]
Required: Yes, if they exist in the model
Description: The data for these keywords allow the definition of Series or Series_switch R, L or C paths.
Usage Rules: For each of these keywords, the three columns hold the typical, minimum, and maximum resistance values. The three entries must be placed on a single line and must be separated by at least one white space. All three columns are required under these keywords. However, data is only required in the typical column. If minimum and/or maximum values are not available, the reserved word "NA" must be used.
Other Notes: This series RLC model is defined to allow IBIS to model simple passive models and/or parasitics.

These keywords are valid only for Series or Series_switch Model_types.

The model is:

[Rl Series] shall be defined only if [L Series] exists.
[Rl Series] is 0 ohms if it is not defined in the path.
[Rc Series] and [Lc Series] shall be defined only if [C Series] exists. [Rc Series] is 0 ohms if it is not defined in the path. [Lc Series] is 0 henries if it is not defined in the path.

C_comp values are ignored for series models.



```
[Series Current]
\begin{tabular}{|lrrr}
Voltage & I (typ) & \(I(\min)\) & \(I(\max)\) \\
-5.0 V & -3900.0 m & -3800.0 m & -4000.0 m \\
-0.7 V & -80.0 m & -75.0 m & -85.0 m \\
-0.6 V & -22.0 m & -20.0 m & -25.0 m \\
-0.5 V & -2.4 m & -2.0 m & -2.9 m \\
-0.4 V & 0.0 m & 0.0 m & 0.0 m \\
5.0 V & 0.0 m & 0.0 m & 0.0 m
\end{tabular}
```

All four columns are required under these keywords. However, data is only required in the typical column. If minimum and/or maximum current values are not available, the reserved word "NA" must be used. "NA" can be used for currents in the typical column, but numeric values MUST be specified for the first and last voltage points on any I-V table. Each I-V table must have at least 2 , but not more than 100 rows.
Other Notes: There is no monotonicity requirement. However the model supplier should realize that it may not be possible to derive a behavioral model from non-monotonic data.

```
```

===================================================================================

```
===
 Keyword: [Series MOSFET]
 Keyword: [Series MOSFET]
 Required: Yes, for series MOSFET switches
 Required: Yes, for series MOSFET switches
 Description: The data points under this keyword define the I-V tables for
 Description: The data points under this keyword define the I-V tables for
 voltages measured at Pin 2 for a given Vds setting. Currents
 voltages measured at Pin 2 for a given Vds setting. Currents
 are considered positive if they flow into Pin 1. Pins 1 and
 are considered positive if they flow into Pin 1. Pins 1 and
 2 are listed under the [Series Pin Mapping] keyword under
 2 are listed under the [Series Pin Mapping] keyword under
 [Series Pin Mapping] and pin_2 columns, respectively.
 [Series Pin Mapping] and pin_2 columns, respectively.
 Sub-Params: Vds
 Sub-Params: Vds
Usage Rules: The first column contains the voltage value, and the three
Usage Rules: The first column contains the voltage value, and the three
 remaining columns hold the typical, minimum, and maximum
 remaining columns hold the typical, minimum, and maximum
 current values. The four entries, Voltage, I(typ), I(min),
 current values. The four entries, Voltage, I(typ), I(min),
 and I(max) must be placed on a single line and must be
 and I(max) must be placed on a single line and must be
 separated by at least one white space.
```

                        separated by at least one white space.
    ```


Either of the FET's could be removed (or have zero current contribution. Thus this model covers all four conditions, off, single NMOS, single PMOS and parallel NMOS/PMOS.
```

Voltage = Table Voltage = Vtable = Vcc - Vs
Ids = Table Current for a given Vcc and Vds

```

Internal Logic that is generally referenced to the power rail is used to set the NMOS MOSFET switch to its 'ON' state. Internal logic likewise referenced to ground is used to set the PMOS device to its 'ON' state if the PMOS device is present. Thus the [Voltage Range] settings provide the assumed gate voltages. If the [POWER Clamp Reference] exists, it overrides the [Voltage Range] value. The table entries are actually Vgs values of the NMOS device and Vcc - Vgs values of the PMOS device, if present. The polarity conventions are identical with those used for other tables that are referenced to power rails. Thus the voltage column can be viewed as a table defining the source voltages Vs according to the convention: Vtable = Vcc - Vs. This convention remains even without the NMOS device.

If the switch is used in an application such as interfacing between 3.3 V and 5.0 V logic, the Vcc may be biased at a voltage (such as 4.3 V) that is different from a power rail voltage (such as 5.0 V) used to create the model. Just readjust the [Voltage Range] entries (or [POWER Clamp Reference] entries).

One fundamental assumption in the MOSFET switch model is that it operates in a symmetrical manner. The tables and expressions are given assuming that Vd >= Vs. If Vd < Vs, then apply the same relationships under the assumption that the source and drain nodes are interchanged. A consequence of this assumption is that the Vds subparameter is constrained to values Vds > 0. It is assumed that with Vds \(=0\) the currents will be 0 mA . A further consequence of this assumption that would be embedded in the analysis process is that the voltage table is based on the side of the model with the lowest voltage (and that side is defined as the source). Thus the analysis must allow current to flow in both directions, as would occur due to reflections when the switch is connected in series with an unterminated transmission line.

The model data is used to create an On state relationship between the actual drain to source current, ids, and the actual drain to source voltage, vds:
\[
i d s=f(v d s)
\]

This functional relationship depends on the actual source voltage Vs and can be expressed in terms of the corresponding table currents associated with Vs (and expressed as a function of Vtable).

If only one [Series MOSFET] table is supplied (as a first order approximation), the functional relationship is assumed to be linearly related to the table drain to source current, Ids, for the given Vds subparameter value and located at the existing gate to source voltage value Vtable. This table current is denoted as Ids(Vtable, Vds). The functional relationship becomes:
```

ids = Ids(Vtable, Vds) * vds/Vds.

```
```

    More than one [Series MOSFET] table is permitted, but it is
    simulator dependent how the data will be used. Each
    successive [Series MOSFET] table must have a different
    subparameter value for Vds. The number of tables must not
    exceed 100.
    C_comp values are ignored for [Series MOSFET] models.
    An NMOS Example
    [On]
[Series MOSFET]
Vds = 1.0

```

```

        4.0V 203.0m 119.4m 317.3m | function of Vtable, for Vds = 1.0
        3.0V 129.8m }\quad74.7\textrm{m}\quad205.6\textrm{m
        2.0V 31.2m 16.6m 51.0m
        1.0V 52.7p 46.7p 56.7p
        0.0V 0.0p 0.0p 0.0p
    |

```
 A PMOS/NMOS Example
[On]
[Series MOSFET]
\(\mathrm{Vds}=0.5\)
 Voltage I(typ) I (min) I (max)
0.048 .6 ma NA NA
0.147 .7 ma NA NA
0.246 .5 ma NA NA
0.346 .1 ma NA NA
0.445 .3 ma NA NA
0.544 .4 ma NA NA
0.642 .9 ma NA NA
0.742 .3 ma NA NA
0.841 .2 ma NA NA
0.939 .7 ma NA NA
1.038 .6 ma NA NA
1.138 .1 ma NA NA
1.238 .6 ma NA NA
1.340 .7 ma NA NA
1.445 .0 ma NA NA
1.549 .2 ma NA NA
1.652 .3 ma NA NA
1.755 .1 ma NA NA
1.857 .7 ma NA NA
1.958 .8 ma NA NA
2.058 .9 ma NA NA
2.159 .2 ma NA NA
2.2 59.3ma NA NA
2.3 59.4ma NA NA
2.459 .8 ma NA NA
2.560 .1 ma NA NA
2.661 .8 ma NA NA
2.762 .3 ma NA NA
2.863 .4 ma NA NA

keyword is still required. The data in the waveform table is taken with the effects of the C_comp parameter included.

A waveform table must include the entire waveform; i.e., the first entry (or entries) in a voltage column must be the DC voltage of the output before switching and the last entry (or entries) of the column must be the final DC value of the output after switching. Each table must contain at least two entries. Thus, numerical values are required for the first and last entries of any column containing numerical data.

The data in all of the waveform tables should be time correlated. In other words, the edge data in each of the tables (rising and falling) should be entered with respect to a single point in time when the input stimulus is assumed to have initiated a logic transition. All waveform extractions should reference a common input stimulus time in order to provide a sufficiently accurate alignment of waveforms. The first line in each waveform table should be assumed to be the reference point in time corresponding to a logic transition. For example, assume that some internal rising edge logic transition starts at time \(=0\). Then a rising edge voltage-time table might be created starting at time zero. The first several table entries might be some "lead-in" time caused by some undefined internal buffer delay before the voltage actually starts transitioning. The falling edge stimulus (for the purpose of setting reference time for the voltage-time table) should also start at time \(=0\). And, the falling edge voltage-time table would be created starting at time zero with a possibly different amount of "lead-in" time caused by a possibly different but corresponding falling edge internal buffer delay. Any actual device differences in internal buffer delay time between rising and falling edges should appear as differing lead-in times between the rising and the falling waveforms in the tables just as any differences in actual device rise and fall times appear as differing voltage-time entries in the tables.

A [Model] specification can contain more than one rising edge or falling edge waveform table. However, each new table must begin with the appropriate keyword and subparameter list as shown below. If more than one rising or falling edge waveform table is present, then the data in each of the respective tables must be time correlated. In other words, the rising (falling) edge data in each of the rising (falling) edge waveform tables must be entered with respect to a common reference point on the input stimulus waveform.

The 'fixture' subparameters specify the loading conditions under which the waveform is taken. The R_dut, C_dut, and L_dut subparameters are analogous to the package parameters R_pkg, C_pkg, and L_pkg and are used if the waveform includes the effects of pin inductance/capacitance. The diagram below shows the interconnection of these elements.

Example of a transmission line and receiver test load
[Test Load] Tline_rcv
Td \(=1 \mathrm{n}\)
Zo
\(=50\)
Receiver_model Input1
|

```

===================================================================================
================================================================================

```

\section*{Section 6a}
A D D
S U B M O D E L
D E S C R I P T I O N

The [Add Submodel] keyword can be used under a top-level [Model] keyword to to add special-purpose functionality to the existing top-level model. This section describes the structure of the top-level model and the submodel.

TOP-LEVEL MODEL:

When special-purpose functional detail is needed, the top-level model can call one or more submodels. The [Add Submodel] keyword is positioned after the initial set of required and optional subparameters of the [Model] keyword and among the keywords under [Model].

The [Add Submodel] keyword lists of name of each submodel and the permitted mode (Driving, Non-Driving or All) under which each added submodel is used.

SUBMODEL:
A submodel is defined using the [Submodel] keyword. It contains a subset of keywords and subparameters used for the [Model] keyword along with other keywords and subparameters that are needed for the added functionality.

The [Submodel] and [Submodel Spec] keywords are defined first since they are used for all submodels.

The only required subparameter in [Submodel] is Submodel_type to define the list of submodel types. No subparameters under [Model] are permitted under the [Submodel] keyword.

The following set of keywords that are defined under the [Model] keyword are supported by the [Submodel] keyword:
[Pulldown]
[Pullup]
[GND Clamp]
[POWER Clamp]
[Ramp]
[Rising Waveform]
[Falling Waveform]
The [Voltage Range], [Pullup Reference], [Pulldown Reference], [GND Clamp Reference], and [POWER Clamp Reference] keywords are not permitted. The voltage settings are inherited from the top-level model.

These additional keywords are used only for the [Submodel] are documented in this section:
[Submodel Spec]
[GND Pulse Table]
[POWER Pulse Table]
```

    The application of these keywords depends upon the Submodel_type entries
    listed below:
    Dynamic_clamp
    Bus hol\overline{d}
    Fal\overline{l_back}
    Permitted keywords that are not defined for any of these submodel types are
    ignored. The rules for what set of keywords are required are found under
    the Dynamic Clamp, Bus Hold, and Fall Back headings of this section.
    Keyword: [Submodel]
    Required: No
    Description: Used to define a submodel, and its attributes.
Sub-Params: Submodel_type
Usage Rules: Each submodel must begin with the keyword [Submodel]. The
submodel name must match the one that is listed under an
[Add Submodel] keyword and must not contain more than 20
characters. A .ibs file must contain enough [Submodel]
keywords to cover all of the model names specified under the
[Add Submodel] keyword.
Submodel_type subparameter is required and must be one of the
following:
Dynamic_clamp, Bus_hold, Fall_back
The C_comp subparameter is not permitted under the [Submodel]
keyword. The total effective die capacitance including the
submodel contributions are provided in the top-level model.
Other Notes: The following list of keywords that are defined under the
[Model] keyword can be used under [Submodel]: [Pulldown],
[Pullup], [GND Clamp], [POWER Clamp], [Ramp], [Rising
Waveform], and [Falling Waveform].
The following list of additional keywords can be used:
[Submodel Spec], [GND Pulse Table], and [POWER Pulse Table].
[Submodel] Dynamic_clamp1
Submodel_type Dynamic_clamp
Keyword: [Submodel Spec]
Required: No
Description: The [Submodel Spec] keyword defines four columns under which
specification and information subparameters are defined for
submodels.
Sub-Params: V_trigger_r, V_trigger_f, Off_delay
Usage Rules: The [Submodel Spec] is to be used only with submodels.
The following subparameters are used:
V_trigger_r Rising edge trigger voltage
V_trigger_f Falling edge trigger voltage
Off_delay Turn-off delay from V_trigger_r or
V_trigger_f

```
For each subparameter contained in the first column, the
remaining three hold its typical, minimum and maximum values.
The entries of typical, minimum and maximum be must be placed
on a single line and must be separated by at least one white
space. All four columns are required under the [Submodel
Spec] keyword. However, data is required only in the typical
column. If minimum and/or maximum values are not available,
the reserved word "NA" must be used to indicate the typical

The [GND Pulse Table] and [POWER Pulse Table] interact with [Submodel Spec] subparameters V_trigger f and V_trigger_r. Several modes of operation exist based on whether a pulse table and its corresponding trigger subparameter are given. These modes are classified as triggered and static.

Triggered Mode:
For triggered mode a pulse table must exist and include the entire waveform; i.e., the first entry (or entries) in a voltage column must be equal to the last entry.

Also, a corresponding [Submodel Spec] V_trigger_* subparameter must exist. The triggered interaction is described:

The V_trigger_f subparameter under [Submodel Spec] is used to detect when the falling edge waveform at the die passes the trigger voltage. At that time the [Gnd Pulse Table] operation starts. Similarly, the V_trigger_r subparameter is used to detect when the rising edge waveform at the die passes the trigger voltage. At that time [POWER Pulse Table] operation starts. The [GND Pulse Table] dependency is shown below:

Waveform at Die
\(\bigcirc \circ \circ \circ\)

The V_trigger_r and [POWER Pulse Table] operate in a similar manner. When the V_trigger_r voltage value is reached on the rising edge, the [POWER Pulse Table] is started. Normally the offset voltage entries in the [POWER Pulse Table] are negative.
```

Static Mode:
When the [GND Pulse Table] keyword does not exist, but the added model
[GND Clamp] table does exist, the added model [GND Clamp] is used directly.
Similarly, when the [POWER Pulse Table] keyword does not exist, but the
added model [POWER Clamp] table does exist, the added model [POWER Clamp]
is used directly.
This mode provides additional fixed clamping to an I/O_* buffer or a
3-state buffer when it is used as a driver.
Example of Dynamic_clamp Model with both dynamic GND and POWER clamps:
[Submodel] Dynamic_Clamp_1
Submodel_type Dynamic_clamp
|
[Submodel Spec]
Subparameter typ min max
V_trigger_f 1.4 1.2 1.6 Falling edge trigger
V_trigger_r 3.6 2.9 4.3 | Rising edge trigger
[Voltage Range] 5.0 4.5 5.5
Note, the actual voltage range and reference voltages are inherited from
the top-level model.
[GND Pulse Table] | GND Clamp offset table
| Pulse Table]

| 0 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: |
| $1 e-9$ | 0 | 0 | 0 |
| $2 e-9$ | 0.9 | 0.8 | 1.0 |
| $0 e-9$ | 0.9 | 0.8 | 1.0 |
| $1-9$ | 0 | 0 | 0 |

|
[GND Clamp] | Table to be offset
Voltage I(typ) I (min) I max)

| -5.000 | $-3.300 \mathrm{e}+01$ | $-3.000 \mathrm{e}+01$ | $-3.500 \mathrm{e}+01$ |
| :--- | :--- | :--- | :--- |
| -4.000 | $-2.300 \mathrm{e}+01$ | $-2.200 \mathrm{e}+01$ | $-2.400 \mathrm{e}+01$ |
| -3.000 | $-1.300 \mathrm{e}+01$ | $-1.200 \mathrm{e}+01$ | $-1.400 \mathrm{e}+01$ |
| -2.000 | $-3.000 \mathrm{e}+00$ | $-2.300 \mathrm{e}+00$ | $-3.700 \mathrm{e}+00$ |
| -1.900 | $-2.100 \mathrm{e}+00$ | $-1.500 \mathrm{e}+00$ | $-2.800 \mathrm{e}+00$ |
| -1.800 | $-1.300 \mathrm{e}+00$ | $-8.600 \mathrm{e}-01$ | $-1.900 \mathrm{e}+00$ |
| -1.700 | $-6.800 \mathrm{e}-01$ | $-4.000 \mathrm{e}-01$ | $-1.100 \mathrm{e}+00$ |
| -1.600 | $-2.800 \mathrm{e}-01$ | $-1.800 \mathrm{e}-01$ | $-5.100 \mathrm{e}-01$ |
| -1.500 | $-1.200 \mathrm{e}-01$ | $-9.800 \mathrm{e}-02$ | $-1.800 \mathrm{e}-01$ |
| -1.400 | $-7.500 \mathrm{e}-02$ | $-7.100 \mathrm{e}-02$ | $-8.300 \mathrm{e}-02$ |
| -1.300 | $-5.750 \mathrm{e}-02$ | $-5.700 \mathrm{e}-02$ | $-5.900 \mathrm{e}-02$ |
| -1.200 | $-4.600 \mathrm{e}-02$ | $-4.650 \mathrm{e}-02$ | $-4.550 \mathrm{e}-02$ |
| -1.100 | $-3.550 \mathrm{e}-02$ | $-3.700 \mathrm{e}-02$ | $-3.450 \mathrm{e}-02$ |
| -1.000 | $-2.650 \mathrm{e}-02$ | $-2.850 \mathrm{e}-02$ | $-2.500 \mathrm{e}-02$ |
| -0.900 | $-1.850 \mathrm{e}-02$ | $-2.100 \mathrm{e}-02$ | $-1.650 \mathrm{e}-02$ |
| -0.800 | $-1.200 \mathrm{e}-02$ | $-1.400 \mathrm{e}-02$ | $-9.750 \mathrm{e}-03$ |
| -0.700 | $-6.700 \mathrm{e}-03$ | $-8.800 \mathrm{e}-03$ | $-4.700 \mathrm{e}-03$ |

```
```

| -0.600 | $-3.000 \mathrm{e}-03$ | $-4.650 \mathrm{e}-03$ | $-1.600 \mathrm{e}-03$ |
| ---: | ---: | ---: | ---: |
| -0.500 | $-9.450 \mathrm{e}-04$ | $-1.950 \mathrm{e}-03$ | $-3.650 \mathrm{e}-04$ |
| -0.400 | $-5.700 \mathrm{e}-05$ | $-2.700 \mathrm{e}-04$ | $-5.550 \mathrm{e}-06$ |
| -0.300 | $-1.200 \mathrm{e}-06$ | $-1.200 \mathrm{e}-05$ | $-5.500 \mathrm{e}-08$ |
| -0.200 | $-3.000 \mathrm{e}-08$ | $-5.000 \mathrm{e}-07$ | $0.000 \mathrm{e}+00$ |
| -0.100 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 0.000 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 5.000 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
|  |  |  |  |

[POWER Pulse Table]
i
Time
1e
re-9
10e-9
V(min)

| Time | V (typ) | V (min) | $V(\max )$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 1e-9 | 0 | 0 | 0 |
| 2e-9 | -0.9 | -1.0 | -0.8 |
| 10e-9 | -0.9 | -1.0 | -0.8 |
| 11e-9 | 0 | 0 | 0 |
| [POWER Clamp] |  |  |  |
| Voltage | I (typ) | $I(\mathrm{~min})$ | $I(\max )$ |
| -5.000 | $1.150 \mathrm{e}+01$ | $1.100 \mathrm{e}+01$ | $1.150 \mathrm{e}+01$ |
| -4.000 | $7.800 \mathrm{e}+00$ | $7.500 \mathrm{e}+00$ | $8.150 \mathrm{e}+00$ |
| -3.000 | $4.350 \mathrm{e}+00$ | $4.100 \mathrm{e}+00$ | $4.700 \mathrm{e}+00$ |
| -2.000 | $1.100 \mathrm{e}+00$ | $8.750 e-01$ | $1.300 \mathrm{e}+00$ |
| -1.900 | $8.000 \mathrm{e}-01$ | $6.050 \mathrm{e}-01$ | $1.000 \mathrm{e}+00$ |
| -1.800 | $5.300 \mathrm{e}-01$ | $3.700 \mathrm{e}-01$ | $7.250 e-01$ |
| -1.700 | 2.900e-01 | $1.800 \mathrm{e}-01$ | 4.500e-01 |
| -1.600 | $1.200 \mathrm{e}-01$ | $6.850 \mathrm{e}-02$ | 2.200e-01 |
| -1.500 | 3.650e-02 | $2.400 \mathrm{e}-02$ | $6.900 \mathrm{e}-02$ |
| -1.400 | 1.200e-02 | $1.100 \mathrm{e}-02$ | $1.600 \mathrm{e}-02$ |
| -1.300 | $6.300 \mathrm{e}-03$ | $6.650 \mathrm{e}-03$ | $6.100 e-03$ |
| -1.200 | $4.200 \mathrm{e}-03$ | $4.750 \mathrm{e}-03$ | 3.650e-03 |
| -1.100 | $2.900 \mathrm{e}-03$ | $3.500 \mathrm{e}-03$ | 2.350e-03 |
| -1.000 | $1.900 \mathrm{e}-03$ | $2.450 \mathrm{e}-03$ | $1.400 \mathrm{e}-03$ |
| -0.900 | $1.150 \mathrm{e}-03$ | $1.600 \mathrm{e}-03$ | $7.100 \mathrm{e}-04$ |
| -0.800 | 5.500e-04 | 9.150e-04 | $2.600 \mathrm{e}-04$ |
| -0.700 | 1.200e-04 | $4.400 \mathrm{e}-04$ | $5.600 \mathrm{e}-05$ |
| -0.600 | 5.400e-05 | 1.550e-04 | 1.200e-05 |
| -0.500 | 1.350e-05 | $5.400 \mathrm{e}-05$ | 1.300e-06 |
| -0.400 | 8.650e-07 | $7.450 \mathrm{e}-06$ | $4.950 e-08$ |
| -0.300 | $6.250 e-08$ | 7.550e-07 | $0.000 \mathrm{e}+00$ |
| -0.200 | $0.000 \mathrm{e}+00$ | $8.400 \mathrm{e}-08$ | $0.000 \mathrm{e}+00$ |
| -0.100 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}-08$ | $0.000 \mathrm{e}+00$ |
| 0.000 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |

[POWER Clamp]
Voltage
I (typ)
-5.000 1.150e+01
-4.000 7.800e+00
-3.000 4.350e+00
-2.000 1.100e+00
-1.900 8.000e-01
-1.800
-1.800
-1.600 1.200e-01 6.850e-02 2.200e-01
-1.500 3.650e-02 2.400e-02 6.900e-02
-1.400 1.200e-02 1.100e-02 1.600e-02
-1.300 6.300e-03 6.650e-03 6.100e-03
-1.200 4.200e-03
-1.100 2.900e-03
-1.000 1.900e-03
-0.900 1.150e-03 1.600e-03 7.100e-04
-0.800 5.500e-04 9.150e-04 2.600e-04
-0.700 1.200e-04 4.400e-04 5.600e-05
-0.600 5.400e-05 1.550e-04 1.200e-05
-0.500 1.350e-05 5.400e-05 1.300e-06
-0.400 8.650e-07 7.450e-06 4.950e-08
-0.300 6.250e-08 7.550e-07 0.000e+00
-0.200 0.000e+00 8.400e-08 0.000e+00
-0.100 0.000e+00 0.000e-08 0.000e+00
0.000 0.000e+00
I (min)
1.100e+01 1.150e+01
1.100e+01 1.150e+01
7.500e+00
4.100e+00
8.150e+00
4.700e+00
8.750e-01
1.300e+00
6.050e-01
1.000e+00
-1.800
4.750e-03
3.650e-03
3.500e-03 2.350e-03
2.450e-03 1.400e-03
0.000e+00
0.000e+00
POWER Clamp offset table
V(max)
V(typ)
V
-1.600e-03
-3.650e-04
-5.550e-06
-5.500e-08
0.000e+00
0.000e+00
0.000e+00
0.000e+00
|
0 0
1e-9 0
2e-9 -0.9
|
I (max)
Table to be offset
<
I(typ)
--

```

```

|===================================================================================-
Bus Hold:
When the Submodel_type subparameter under the [Submodel] keyword is set to
Bus_hold, the adde\overline{d model describes the bus hold functionality. However,}
while described in terms of bus hold functionality, active terminators
can also be modeled.

```

Existing keywords and subparameters are used to describe bus hold models. The [Pullup] and [Pulldown] tables both are used to define an internal buffer that is triggered to switch to its opposite state. This switching transition is specified by a [Ramp] keyword or by the [Rising Waveform] and [Falling Waveform] keywords. The usage rules for these keywords are the same as under the [Model] keyword. In particular, at least either the [Pullup] or [Pulldown] keyword is required. Also, the [Ramp] keyword is required, even if the [Rising Waveform] and [Falling Waveform] tables exist. However, the voltage ranges and reference voltages are inherited from the top-level model.

For bus hold submodels, the [Submodel Spec] keyword, V_trigger_r, and V_trigger_f are required. The Off_delay subparameter is optional, and can only be used if the submodel consists of a pullup or a pulldown structure only, and not both. Devices which have both pullup and pulldown structures controlled in this fashion can be modeled using two submodels, one for each half of the circuit.

The transition is triggered by action at the die using the [Submodel Spec] V_trigger_r and V_trigger_f subparameters is described next. In all subsequent discussions, "low" means the pulldown structure is on or active, and the pullup structure is off or inactive if either or both exist. The opposite settings are referred to as "high".

If the starting voltage is below V_trigger_f, then the bus hold model is set to the low state causing additional pulldown current. If the starting voltage is above V trigger_r, the bus hold model is set to the high state for additional pullup current.

Under some unusual cases, the above conditions can be both met or not met at all. To resolve this, the EDA tool should compute the starting voltage with the bus hold model set to low. If the starting voltage is equal to or less than the average of V_trigger_r and V_trigger_f, keep the bus hold model in the low state. Otherwise, set the bus hold model to the high state.

When the input passes through V_trigger_f during a high-to-low transition at the die, the bus hold output switches to the low state. Similarly, when the input passes though V_trigger_r during a low-to-high transition at the die, the bus hold output switches to the high state.

If the bus hold submodel has a pullup structure only, V_trigger_r provides the time when its pullup is turned on and V_trigger_f or Off_delay provides the time when it is turned off, whichever occurs first. Similarly, if the submodel has a pulldown structure only, V_trigger_f provides the time when its pulldown is turned on and V_trigger_r or Off_delay provides the time when it is turned off, whichever occurs first. The required V_trigger_r and V_trigger_f voltage entries can be set to values outside of the input signal range íf the pullup or pulldown structures are to be held on until the Off_delay turns them off.

The starting mode for each of the submodels which include the Off_delay subparameter of the [Submodel Spec] keyword is the off state. Also, while two submodels provide the desired operation, either of the submodels may exist without the other to simulate turning on and off only a pullup or a pulldown current.

The following tables summarizes the bus hold initial and switching
```

transitions:
BUS HOLD WITHOUT OFF_DELAY:
Initialization:
Initial Vdie Value Initial Bus Hold
Submodel State
---------------------------------------------------------
<= V_trigger_r \& < V_trigger_f low
=> V_trigger_f \& > V_trigger_r high
<= (V_trigger_f + V_trigger_r)/2 low | Recommendations if neither
> (V_trigger_E + V_trigger_r)/2 high | or both conditions above
are satisifed
Transitions:

| Prior Bus Hold | Vdie transition | Bus Hold <br> Submodel State |
| :--- | :--- | :--- |
|  | through | Transition |

BUS HOLD WITH OFF_DELAY (REQUIRES EITHER [PULLUP] or [PULLDOWN] ONLY):
Initialization:

| [Pullup] or | Initial Bus Hold |
| :---: | :---: |
| [Pulldown] Table | Submodel State (Off Mode) |
| [Pullup] | low |
| [Pulldown] | high |

Transitions:

| Prior Bus Hold Submodel State | Vdie transition | Bus Hold | Off_delay |
| :---: | :---: | :---: | :---: |
|  | through | Transition | Transition |
|  | V_trigger_r/f |  |  |
| low | V_trigger_r | low-to-high | high-to-low |
| low | V_trigger_f | no change | no change |
| high | V_trigger_r | no change | no change |
| high | V_trigger_f | high-to-low | low-to-high |

Note, if Vdie passes again through the V trigger r/f thresholds before the Off_delay time is reached, the bus hold state follows the change documented in the first table, overriding the Off_delay transition.
No additional keywords are needed for this functionality.

```
```

    Complete Bus Hold Model Example:
    [Submodel]
[Submodel Spec]
Subparameter typ min max
V_trigger_f 1.3 1.2 1.4 Falling edge trigger
V_trigger_r 3.1 2.6 4.6 | Rising edge trigger
typ min max
[Voltage Range] 5.0 4.5 5.5
Note, the actual voltage range and reference voltages are inherited from
the top-level model.
[Pulldown]
|
-5V -100uA -80uA -120uA
-1V -30uA -25uA -40uA
OV 0 0 0
1V 30uA 25uA 40uA
3V 50uA 45uA 50uA
5V 100uA 80uA 120uA
l0v 120uA 90uA 150uA
[Pullup]
|

| $-5 V$ | $100 u A$ | $80 u A$ | $120 u A$ |
| :--- | :--- | :---: | :---: |
| $-1 V$ | $30 u A$ | $25 u A$ | $40 u A$ |
| $0 V$ | 0 | 0 | 0 |
| $1 V$ | $-30 u A$ | $-25 u A$ | $-40 u A$ |
| $3 V$ | $-50 u A$ | $-45 u A$ | $-50 u A$ |
| $5 V$ | $-100 u A$ | $-80 u A$ | $-120 u A$ |
| $10 v$ | $-120 u A$ | $-90 u A$ | $-150 u A$ |

|
page 68

```

subparameter is not permitted. Devices which have both pullup and pulldown structures can be modeled using two submodels, one for the rising cycle and one for the falling cycle.

In all following discussion, "low" means the pulldown structure is on or active, and the pullup structure is off or inactive. The opposite settings are referred to as "high".

The transition is triggered by action at the die using the [Submodel Spec] V_trigger_r and V_trigger_f subparameters. The initialization and transitions are set as follows:

INITIAL STATE:
\begin{tabular}{|c|c|}
\hline [Pullup] or & Initial Fall Back \\
\hline Table & Submodel State (Off Mode) \\
\hline [Pullup] & low \\
\hline [Pulldown] & high \\
\hline
\end{tabular}

DRIVER RISING CYCLE:
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Prior \\
State
\end{tabular} & Vdie & Rising Edge Transition & \begin{tabular}{l}
Vdie > V_trigger_r \\
Transition
\end{tabular} \\
\hline low & \[
\begin{aligned}
& <=\text { V_trigger_r } \\
& >\text { V_trigger_r }
\end{aligned}
\] & low-to-high stays low & \[
\begin{aligned}
& \text { high-to-low } \\
& \text { stays low }
\end{aligned}
\] \\
\hline high & \[
\begin{aligned}
& \text { <= V_trigger_r } \\
& >\text { V_trigger_r }
\end{aligned}
\] & stays high stays high & high-to-low stays high \\
\hline
\end{tabular}

DRIVER FALLING CYCLE:
\begin{tabular}{|c|c|c|c|}
\hline Prior State & Vdie & Falling Edge Transition & Vdie < V_trigger_f Transition \\
\hline high & \[
\begin{aligned}
& =>\text { V_trigger_f } \\
& \text { < V_trigger_f }
\end{aligned}
\] & \begin{tabular}{l}
high-to-low \\
stays high
\end{tabular} & low-to-high stays high \\
\hline low & \[
\begin{aligned}
& =>\text { V_trigger_f } \\
& \text { < V_trigger_f }
\end{aligned}
\] & stays low stays low & low-to-high stays low \\
\hline
\end{tabular}

One application is to configure the submodel with only a pullup structure. At the beginning of the rising edge cycle, the pullup is turned on to the high state. When the die voltage passes V_trigger_r, the pullup structure is turned off. Because only the pullup structure is used, the off state is low corresponding to a high-Z state. During the falling transition, the pullup remains in the high-Z state if the V_trigger_f is set out of range to avoid setting the submodel to the high state. So a temporary boost in drive occurs only during the first part of the rising cycle.

A similar submodel consisting of only a pulldown structure could be constructed to provide added drive strength only at the beginning of the falling cycle. The complete IBIS model would have both submodels to give added drive strength for both the start of the rising and the start of the falling cycles.

```

[Pulldown]
|
-5V -100mA -80mA -120mA
OV 0 0 0
10v 200mA 160mA 240mA
[Pullup] table is omitted to signify Open_drain functionality.
-------------------------------------------------------------------------------------------
[Ramp]
| typ min max
dV/dt_r 1.5/0.50n 1.43/0.75n 1.58/0.35n
dV/dt_f 1.5/0.50n 1.43/0.75n 1.58/0.35n
R_load = 50
=================================================================================
|==================================================================================

```

```

================================================================================== (

```

\section*{Section 6b}
```

    MULT I - LINNGUA L M O D E L E X T ENS I O N S
    ```
```

    MULT I - LINNGUA L M O D E L E X T ENS I O N S
    ```



```

    INTRODUCTION :
    ```
 INTRODUCTION :
 The SPICE, VHDL-AMS and Verilog-AMS languages are supported by IBIS. This
 The SPICE, VHDL-AMS and Verilog-AMS languages are supported by IBIS. This
 chapter describes how models written in these languages can be referenced
 chapter describes how models written in these languages can be referenced
 and used by IBIS files.
 and used by IBIS files.
 The language extensions use the following keywords within the IBIS
 The language extensions use the following keywords within the IBIS
 framework:
 framework:
 [External Circuit] - References enhanced descriptions of structures
 [External Circuit] - References enhanced descriptions of structures
 [End External Circuit] on the die, including digital and/or analog,
 [End External Circuit] on the die, including digital and/or analog,
 active and/or passive circuits
 active and/or passive circuits
 [External Model] - Same as [External Circuit], except limited to
 [External Model] - Same as [External Circuit], except limited to
 [End External Model] the connection format and usage of the [Model]
 [End External Model] the connection format and usage of the [Model]
 keyword, with one additional feature added:
 keyword, with one additional feature added:
 support for true differential buffers
 support for true differential buffers
 [Node Declarations] - Lists on-die connection points related to
 [Node Declarations] - Lists on-die connection points related to
 [End Node Declarations] the [Circuit Call] keyword
 [End Node Declarations] the [Circuit Call] keyword
 [Circuit Call] - Instantiates [External Circuit]s and connects
 [Circuit Call] - Instantiates [External Circuit]s and connects
 [End Circuit Call] them to each other and/or die pads
 [End Circuit Call] them to each other and/or die pads
The placement of these keywords within the hierarchy of IBIS is shown in the
The placement of these keywords within the hierarchy of IBIS is shown in the
following diagram:
following diagram:
 |-- [Component]
 |-- [Component]
 | ...
 | ...
 |-- [Node Declarations]
 |-- [Node Declarations]
 |-- [End Node Declarations]
 |-- [End Node Declarations]
 ...
 ...
 ...
 ...
 |-- [Circuit Call]
 |-- [Circuit Call]
 |-- [End Circuit Call]
 |-- [End Circuit Call]
 |..
 |..
...
...
-- [Model]
-- [Model]
 | ...
 | ...
 |-- [External Model]
 |-- [External Model]
 |-- [End External Model]
 |-- [End External Model]
 ...
 ...
...
...
-- [External Circuit]
-- [External Circuit]
-- [End External Circuit]
```

-- [End External Circuit]

```

Figure 1

LANGUAGES SUPPORTED:
IBIS files can reference other files which are written using the SPICE, VHDL-AMS, or Verilog-AMS languages. In this document, these languages are defined as follows:
"SPICE" refers to SPICE 3, Version \(3 F 5\) developed by the University of California at Berkeley, California. Many vendor-specific EDA tools are compatible with most or all of this version.
"VHDL-AMS" refers to "IEEE Standard VHDL Analog and Mixed-Signal
Extensions", approved March 18, 1999 by the IEEE-SA Standards Board and designated IEEE Std. 1076.1-1999.
"Verilog-AMS" refers to the Analog and Mixed-Signal Extensions to Verilog-HDL as documented in the Verilog-AMS Language Reference, Version 2.0. This document is maintained by Accellera (formerly Open Verilog International), an independent organization. Verilog-AMS is a superset that includes Verilog-A and the Verilog Hardware Description Language IEEE 1364-2001.

In addition the "IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std_logic_1164)" designated IEEE Std. 1164-1993 is required to promote common digital data types.

Note that, for the purposes of this section, keywords, subparameters and other data used without reference to the external languages just described are referred to collectively as "native" IBIS.

OVERVIEW:

The four keyword pairs discussed in this chapter can be separated into two groups based on their functionalities. The [External Model], [End External Model], [External Circuit] and [End External Circuit] keywords are used as pointers to the models described by one of the external languages. The [Node Declaration], [End Node Declaration], [Circuit Call], and [End Circuit Call] keywords are used to describe how [External Circuit]s are connected to each other and/or to the die pads.

The [External Model] and [External Circuit] keywords are very similar in that they both support the same external languages, and they can both be used to describe passive and/or active circuitry. The key difference between the two keywords is that [External Model] can only be placed under the [Model] keyword, while [External Circuit] can only be placed outside the [Model] keyword. This is illustrated in Figure 1 above.

The intent behind [External Model] is to provide an upgrade path from native native IBIS [Model]s to the external languages (one exception to this is the support for true differential buffers). Thus, the [External Model] keyword can be used to replace the usual I-V and V-T tables, C_comp, C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, C_comp_gnd_clamp subparameters, [Ramp], [D̄river Schedule], [Submodel] keywords, etc. of \({ }^{-}\)a [Model] by any modeling technique that the external languages allow. For [External Model]s, the connectivity, test load and specification parameters (such as Vinh and Vinl) are preserved from the [Model] keyword and the simulator is expected to
carry out the same type of connections and measurements as is usually done with the [Model] keyword. The only difference is that the model itself is described by an external language.

In the case of the [External Circuit], however, one can model a circuit having any number of ports (see definitions below). For example, the ports may include impedance or buffer strength selection controls in addition to the usual signal and supply connections. The connectivity of an [External Circuit] is defined by the [Node Declaration] and [Circuit Call] keywords. Currently, the test loads and measurement parameters for an [External Circuit] can only be defined inside the model description itself. The results of measurements can be reported to the user or tool via other means.

The [Circuit Call] keyword acts similarly to subcircuit calls in SPICE, instantiating the various [External Circuit]s and connecting them together. Please note that models described by the [External Model] keyword are connected according to the rules and assumptions of the [Model] keyword. [Circuit Call] is not necessary for these cases and must not be used.

\section*{DEFINITIONS:}

For the purposes of this document, several general terms are defined below. circuit - any arbitrary collection of active or passive electrical elements treated as a unit
node - any electrical connection point; also called die node (may be digital or analog; may be a connection internal to a circuit or between circuits)
pad - a special case of a node. A pad connects a buffer or other circuitry to a package; also called die pad.
port - access point in an [External Model] or [External Circuit] definition for digital or analog signals
pseudo-differential circuits - combination of two single-ended circuits which drive and/or receive complementary signals, but where no internal current relationship exists between them
true differential circuits - circuits where a current relationship exists between two output or inputs which drive or receive complementary signals

GENERAL ASSUMPTIONS:

Ports under [Model]s:
The use of ports under native IBIS must be understood before the multilingual extensions can be correctly applied. The [Model] keyword assumes, but does not explicitly require naming ports on circuits. These ports are
automatically connected by IBIS-compliant tools without action by the user. For example, the [Voltage Reference] keyword implies the existence of power supply rails which are connected to the power supply ports of the circuit described by the [Model] keyword.

For multi-lingual modeling, ports must be explicitly named in the [External Model] or [External Circuit]; the ports are no longer assumed by EDA tools. To preserve compatibility with the assumptions of [Model], a list of pre-defined port names has been created where the ports are reserved reserved with fixed functionality. These reserved ports are defined in the table below.
```

Port Name Description
========= ===========================
1 D_drive Digital input to a model unit
2 ~ D \_ e n a b l e ~ D i g i t a l ~ e n a b l e ~ f o r ~ a ~ m o d e l ~ u n i t
D__receive Digital receive port of a model unit, based on data on
A_signal (and/or A_signal_pos and A_signal_neg)
4 A_puref Voltage reference port for pullup structure
5 \mp@code { A _ p c r e f ~ V o l t a g e ~ r e f e r e n c e ~ p o r t ~ f o r ~ p o w e r ~ c l a m p ~ s t r u c t u r e }
6 A_pdref Voltage reference port for pulldown structure
7 A_gcref Voltage reference port for ground clamp structure
8 A_signal I/O signal port for a model unit
9 A_extref External reference voltage port
1 0 ~ D \_ s w i t c h ~ D i g i t a l ~ i n p u t ~ f o r ~ c o n t r o l ~ o f ~ a ~ s e r i e s ~ s w i t c h ~ m o d e l ~
11 A_gnd Global reference voltage port
12 A_pos Non-inverting port for series or series switch models
13 A_neg Inverting port for series or series switch models
14 A_signal_pos Non-inverting port of a differential model
15 A_signal_neg Inverting port of a differential model

```

The first letter of the port name designates it as either digital ("D") or analog ("A"). Reserved ports 1 through 13 listed above are assumed or implied under the native IBIS [Model] keyword. Again, for multi-lingual models, these ports must be explicitly assigned by the user in the model if their functions are to be used. A_gnd is a universal reference node, similar to SPICE ideal node "0." Ports 14 and 15 are only available under [External Model] for support of true differential buffers.

Under the [Model] description, power and ground reference ports are created and connected by IBIS-compliant tools as defined by the [Power Clamp Reference], [GND Clamp Reference], [Pullup Reference], [Pulldown Reference] and/or [Voltage Range] keywords. The A_signal port is connected to the die pad, to drive or receive an analog signāl.

Ports under [External Model]s:
The [External Model] keyword may only appear under the [Model] keyword and it may only use the same ports as assumed with the native IBIS [Model] keyword. However, [External Model] requires that reserved ports be explicitly declared in the referenced language(s); tools will continue to assume the connections to these ports.

For [External Model], reserved analog ports are usually assumed to be die pads. These ports would be connected to the component pins through [Package Model]s or [Pin] parasitics. Digital ports under [External Model] would connect to other internal digital circuitry.

Drawings of two standard [Model] structures -- an I/O buffer and a Series Switch -- are shown below, with their associated port names.

Figure 2

Figure 3

Ports under [External Circuit]s:
The [External Circuit] keyword allows the user to define any number of ports and port functions on a circuit. The [Circuit Call] keyword instantiates [External Circuit]s and connects their ports to specific die nodes (this can include pads). In this way, the ports of an [External Circuit] declaration become specific component die nodes. Note that, if reserved digital port names are used with an [External Circuit], those ports will be connected automatically as defined in the port list above (under [External Circuit], reserved analog port names do not retain particular meanings).

The diagram below illustrates the use of [External Circuit]. Buffer A is an instance of [External Circuit] "X". Similarly, Buffer B is an instance of [External Circuit] "Z". These instances are created through [Circuit Call]s. [External Circuit] "Y" defines an on-die interconnect circuit. Nodes "a" through "e" and nodes "f" through "j" are specific instances of the ports defined for [External Circuit]s "X" and "Z". These ports become the internal nodes of the die and must be explicitly declared with the [Node Declaration] keyword. The "On-die Interconnect" [Circuit Call] creates an instance of the [External Circuit] "Y" and connects the instance with the appropriate power, signal, and ground die pads. The "A" and "B" [Circuit Call]s connect the individual ports of each buffer instance to the "On-die Interconnect" [Circuit Call].

Note that the "Analog Buffer Control" signal is connected directly to the pad for pin 3. This connection is also made through an entry under the [Circuit Call] keyword.

Figure 4
The [Model], [External Model] and [External Circuit] keywords (with [Circuit Call]s and [Node Declarations] as appropriate) may be combined together in the same IBIS file or even within the same [Component] description.

\section*{SPICE versus VHDL-AMS and VERILOG-AMS}

The intent of native IBIS is to model the circuit block between the region where analog signals are of interest, and the digital logic domain internal to the component. (for the purposes of this discussion, the IBIS circuit block is called a "model unit" in the drawings and document text below).

The multi-lingual modeling extensions maintain and expand this approach, assuming that both digital signals and/or analog signals can move to and from the model unit. All VHDL-AMS and Verilog-AMS models, therefore must have digital ports and analog ports (in certain cases, digital ports may not be required, as in the case of interconnects; see [External Circuit] below). Routines to convert signals from one format to the other are the responsibility of the model author.

SPICE cannot process digital signals. All SPICE input and output signals must be in analog format. Consequently, IBIS multi-lingual models using SPICE require analog-to-digital (A_to_D) and/or digital-to-analog (D_to_A) converters to be provided by the EDA tool. The converter subparameters are declared by the user, as part of the [External Model] or [External Circuit]
syntax, with user-defined names for the ports which connect the converters to the analog ports of the SPICE model. The details behind these declarations are explained in the keyword definitions below.

To summarize, Verilog-AMS and VHDL-AMS contain all the capability needed to ensure that a model unit consists of only digital ports and/or analog ports. SPICE, however, needs extra data conversion, provided by the EDA tool, to ensure that any digital signals can be correctly processed.

Figure 5: AMS Model Unit, using an I/O buffer as an example

Model Unit consists of SPICE code plus A_to_D and D_TO_A converters (references for \(D_{\text {_to_A }}\) and A_to_D converters not shown)

Figure 6: SPICE Model Unit, using an I/O buffer as an example
```

====================================================================================
KEYWORD DEFINITIONS:
==================================================================================
Keywords: [External Model], [End External Model]
Required: No
Description: Used to reference an external file written in one of the
supported languages containing an arbitrary circuit
definition, but having ports that are compatible with the
[Model] keyword, or having ports that are compatible with the
[Model] keyword plus an additional signal port for true
differential buffers.
Sub-Params: Language, Corner, Parameters, Ports, D_to_A, A_to_D
Usage Rules: The [External Model] keyword must be positioned within a
[Model] section and it may only appear once for each [Model]
keyword in a .ibs file. It is not permitted under the
[Submodel] keyword.
[Circuit Call] may not be used to connect an [External Model].
A native IBIS [Model]'s data may be incomplete if the [Model]
correctly references an [External Model]. Any native IBIS
keywords that are used in such a case must contain
syntactically correct data and subparameters according to
native IBIS rules. In all cases, [Model]s which reference
[External Model]s must include the following keywords and
subparameters:

```
```

Model_type

```
Model_type
Vinh, -Vinl (as appropriate to Model_type)
Vinh, -Vinl (as appropriate to Model_type)
[Voltage Range] and/or [Pullup Reference],
[Voltage Range] and/or [Pullup Reference],
 [Pulldown Reference], [POWER Clamp Reference],
 [Pulldown Reference], [POWER Clamp Reference],
 [GND Clamp Reference], [External Reference]
 [GND Clamp Reference], [External Reference]
 The following keywords and subparameters may be omitted,
 regardless of Model_type, from a [Model] using [External
 Model]:
 C_comp and/or C_comp_*
 [Ramp]
 [Pulldown], [Pullup], [POWER Clamp], [GND Clamp]
 Subparameter Definitions:
 Language:
 Accepts "SPICE", "VHDL-AMS", or "Verilog-AMS" as arguments.
 The Language subparameter is required and must appear only
 once.
Corner:
Three entries follow the Corner subparameter on each line:
```

```
 corner_name file_name circuit_name
The corner_name entry is "Typ", "Min", or "Max". The
file_name entry points to the referenced file in the same
directory as the .ibs file.
Up to three Corner lines are permitted. A "Typ" line is required. If "Min" and/or "Max" data is missing, the tool may use "Typ" data in its place. However, the tool should notify the user of this action.
The circuit_name entry provides the name of the circuit to be simulated within the referenced file. For SPICE files, this is normally a ".subckt" name. For VHDL-AMS files, this is normally an "entity(architecture)" name pair. For Verilog-AMS files, this is normally a "module" name.
No character limits, case-sensitivity limits or extension conventions are required or enforced for file_name and circuit_name entries. However, the total number of characters in each Corner line must comply with the rules in Section 3. Furthermore, lower-case file name entries are recommended to avoid possible conflicts with file naming conventions under different operating systems. Case differences between otherwise identical file_name entries or circuit_name entries should be avoided. External languages may not support case-sensitive distinctions.
```


## Parameters:

Lists names of parameters that can be passed into an external model file. Each Parameters assignment must match a name or keyword in the external file or language. The list of Parameters may span several lines by using the word Parameters at the start of each line. The Parameters subparameter is optional, and the external model must operate with default settings without any Parameters assignments.

Parameter passing is not supported in SPICE. VHDL-AMS parameters are supported using "generic" names, and Verilog-AMS parameters are supported using "parameter" names.

Ports:

Ports are interfaces to the [External Model] which are available to the user and tool at the IBIS level. They are used to connect the [External Model] to die pads. The Ports parameter is used to identify the ports of the [External Model] to the simulation tool. The port assignment is by position and the port names do not have to match exactly the names inside the external file. The list of port names may span several lines if the word Ports is used at the start of each line.

Model units under [External Model] may only use reserved
ports. The reserved, pre-defined port names are listed in the General Assumptions heading above. As noted earlier, digital and analog reserved port functions will be assumed by the tool and connections made accordingly. All the ports appropriate to the particular Model_type subparameter entry must be explicitly listed (see below). Note that the user may connect SPICE models to A_to_D and D_to_A converters using custom names for analog ports within the model unit, so long as the digital ports of the converters use the digital reserved port names.

The rules for pad connections with [External Model] are identical to those for [Model]. The [Pin Mapping] keyword may be used with [External Model]s but is not required. If used, the [External Model] specific voltage supply ports -- A_puref, A_pdref, A_gcref, A_pcref, and A_extref -- are connected as defined under the [Pin Mapping] keyword. In all cases, the voltage levels connected on the reserved supply ports are defined by the [Power Clamp Reference], [GND Clamp Reference], [Pullup Reference], [Pulldown Reference], and/or [Voltage Range] keywords, as in the case of [Model].

## Digital-to-Analog/Analog-to-Digital Conversions:

These subparameters define all digital-to-analog and analog-to-digital converters needed to properly connect digital signals with the analog ports of referenced external SPICE models. These subparameters must be used when [External Model] references a file written in the SPICE language. They are not permitted with Verilog-AMS or VHDL-AMS external files.

D_to_A:
As assumed in [Model], some interface ports of [External Model] circuits expect digital input signals. As SPICE models understand only analog signals, some conversion from digital to analog format is required. For example, input logical states such as '0' or '1,' implied in [Model], must be converted to actual input voltage stimuli, such as a voltage ramp, for SPICE simulation.

The D_to_A subparameter provides information for converting a digital stimulus, such as '0' or 'l', into an analog voltage ramp (a digital 'X' input is ignored by D_to_A converters). Each digital port which carries data for conversion to analog format must have its own D_to_A line.

The D_to_A subparameter is followed by eight arguments:
d_port port1 port2 vlow vhigh trise tfall corner_name
The d_port entry holds the name of the digital. This entry is used for the reserved port names D_drive, D_enable, and D_switch. The port1 and port2 entries hold the SPICE analog input port names across which voltages are specified. These entries are used for the user-defined port names, together
with another port name, used as a reference.

Normally port1 accepts an input signal and port2 is the reference for portl. However, for an opposite polarity stimulus, portl could be connected to a reference port and port2 could serve as the input.

The vlow and vhigh entries accept analog voltage values which must correspond to the digital off and on states, where the vhigh value must be greater than the vlow value. For example, a 3.3 V ground-referenced buffer would list vlow as 0 V and vhigh as 3.3 V . The trise and tfall entries are times, must be positive and define input ramp rise and fall times between 0 and 100 percent.

The corner_name entry holds the name of the external model corner being referenced, as listed under the Corner subparameter.

At least one D_to_A line must be present, corresponding to the "Typ" corner model, for each digital line to be converted. Additional D_to_A lines for other corners may be omitted. In this case, the typical corner D_to_A entries will apply to all model corners and the "Typ" corner_name entry may be omitted.

A_to_D:
The A_to_D subparameter is used to generate a digital state ('0', 'I', or 'X') based on analog voltages generated by the SPICE model or analog voltages present at the pad/pin. This allows an analog signal from the external SPICE circuit or pad/pin to be read as a digital signal by the simulation tool.

The A_to_D subparameter is followed by six arguments:
d_port port1 port2 vlow vhigh corner_name
The d_port entry lists the reserved port name D_receive. As with D_to_A, the portl entry would normally contain the reserved name A_signal (see below) or a user-defined port name, while port2 may list any other analog reserved port name, used as a reference. The voltage measurements are taken in this example from the porti entry with respect to the port2 entry. These ports must also be named by the Ports subparameter.

The vlow and vhigh entries list the low and high analog threshold voltage values. The reported digital state on D_receive will be '0' if the measured voltage is lower than the vlow value, 'l' if above the vhigh value, and 'X' otherwise.

The corner_name entry holds the name of the external model corner being referenced, as listed under the Corner subparameter.

At least one A_to_D line must be supplied corresponding to the


An example of an [External Model] is shown at the end of this section.

Pseudo-Differential Buffers:
Pseudo-differential buffers may be described using a pair of [External Model]s which may or may not be identical. Each of the analog I/O signal ports (usually A_signal) is connected to a specific pad through the [Pin] list in the usual fashion, and the two ports are linked together as a differential pair through the [Diff Pin] keyword.

The reserved signal name A_signal is required for the I/O signal ports of [External Model]s connected to pads used in a pseudo-differential configuration.

Users should note that, in pseudo-differential buffers, only one formal signal port is used to stimulate the two [External Model] digital inputs (D_drive). One of these inputs will reflect the timing and pōlarity of the formal signal port named by the user, while the other input is inverted and (potentially) delayed with respect to the formal port as defined under the [Diff Pin] keyword. THIS SECOND PORT IS AUTOMATICALLY CREATED BY THE SIMULATION TOOL. Users do not have to create special structures to invert or delay the driven digital signal. Simulation tools will correctly implement the two input ports once the [Diff Pin] keyword has been detected in the .ibs file. This approach is identical to that used in native IBIS.

The D_to_A adapters used for SPICE files can be set up to control ports on pseudo-differential buffers. If SPICE is used as an external language, the [Diff Pin] vdiff subparameter overrides the contents of vlow and vhigh under A_to_D.

IMPORTANT: For pseudo-differential buffers under [External Model], the analog input response may only be measured at the die pads. The [Diff Pin] parameter is required, and controls both the polarity and the differential thresholds used to determine the D_receive port response (the D_receive port will follow the state of the non-inverting pin/pa $\bar{d}$ as referenced to the inverting pin/pad). For SPICE models, the A_to_D line must name the A_signal port under either port1 or port $\overline{2}$, as with a single-ended buffer. The A_to_D converter then effectively acts "in parallel" with the load of the buffer circuit. The vhigh and vlow parameters will be overriden by the [Diff Pin] vdiff declarations.

The port relationships are shown in the examples below.


Figure 8 - Example SPICE implementation

* This signal is automatically created, by inverting and delaying D_drive based on the information in [Diff Pin].
** Pseudo-differential buffers must have A_to_D entries, but D_receive is determined by the state of A_signal (Inverting) and A_signal (Non-inverting) according to the [Diff Pin] declarātion.
*** D_enable is shared between the separate buffers. This sharing is handled by the EDA tool.

The following drawing illustrates the same concepts with a *-AMS model. Note that the state of $D_{\text {_receive }}$ is determined by the tool automatically by observing the A_signal ports.

```
 The outputs of the actual receiver circuits in the *-AMS
 models are not used for determining D_receive.
 D_receive** -------**-------+
 D_enable*** -------| | | |----------+
 D_enable*** ------- {
N_(*)
Figure 9 - Example *-AMS implementation
* This signal is automatically created, by inverting and delaying D_drive based on the information in [Diff Pin] (digital output will be based on evaluation of signals \%\% and \&\& also using [Diff Pin])
** D_receive for pseudo-differential buffers is determined by the state of A_signal (Inverting) and A_signal (Non-inverting) according to the [Diff Pin] declaration.
*** D_enable is shared between the separate buffers. This sharing is handled by the EDA tool.
Two additional differential timing test loads are available:
Rref_diff, Cref_diff
These subparameters are also available under the [Model Spec] keyword for typical, minimum, and maximum corners.
These timing test loads require both sides of the differential model to be operated. They can be used with the existing timing test loads Rref, Cref, and Vref. The existing timing test loads and Vmeas are used if Rref_diff and Cref_diff are NOT given.
True Differential Models:
True differential buffers may be described using [External Model]. In a true differential [External Model], the differential I/O ports which connect to die pads use the
```

reserved names A_signal_pos and A_signal_neg, as shown in the diagram below.


Figure 10

IMPORTANT: All true differential models under [External Model] assume single-ended digital port connections (D_drive, D_enable, D_receive).

The [Diff Pin] keyword is still required within the same [Component] definition when [External Model] describes a true differential buffer. The models referenced by each pin listed under [Diff Pin] MUST be the same.

The D_to_A or A_to_D adapters used for SPICE files may be set up to control or respond to true differential ports. An example is shown below.


Figure 11: Example SPICE implementation of a true differential buffer

If at-pad or at-pin measurement using a SPICE [External Model] is desired, the vlow and vhigh entries under the A_to_D subparameter must be consistent with the values of the [Diff Pin] vdiff subparameter entry (the vlow value must match -vdiff, and the vhigh value must match +vdiff). The logic states produced by the A_to_D conversion follow the same rules as for single-ended buffers, listed above. An example is shown at the end of this section.

IMPORTANT: For true-differential buffers under [External Model], the user can choose whether to measure the analog input response at the die pads or internal to the circuit (this does not preclude tools from reporting digital D_receive and/or analog responses in addition to at-pad A_signal response). If at-pad measurements for a SPICE model are desired, the A_signal_pos port would be named in the A_to_D line under portl and A_signal_neg under port2. The A_to_D converter then effectively acts "in parallel" with the load of the buffer circuit. If internal measurements are desired (e.g., if the user wishes to view the signal after processing by the input buffer), the user-defined analog signal port would be named in the A_to_D line under port1. The A_to_D converter is "in series" with the receiver buffer model. The vhigh and vlow parameters should be adjusted appropriate to the measurement point of interest, so long as they as they are consistent with the [Diff Pin] vdiff declarations.

Note that the thresholds refer to the state of the non-inverting signal, using the inverting signal as a reference. Therefore, the output signal is considered high when, for example, the non-inverting input is +200 mV above the inverting input. Similarly, the output signal is considered low when the same non-inverting input is -200 mV "above" the inverting input.

EDA tools will report the state of the D_receive port for true differential *-AMS [External Model]s accōrding to the AMS code written by the model author; the use of [Diff Pin] does not affect the reporting of $D_{\text {_receive }}$ in this case. EDA tools are free to additionally report the state of the I/O pads according to the [Diff Pin] vdiff subparameter.

For both SPICE and *-AMS true differential [External Model]s, the EDA tool must not override or change the model author's connection of the D_receive port.

Four additional Model type arguments are available under the [Model] keyword. One of these must be used when an [External Model] describes a true differential model:

I/O_diff, Output_diff, 3-state_diff, Input_diff
Two additional differential timing test loads are available:
Rref_diff, Cref_diff

These subparameters are also available under the [Model Spec] keyword for the typical, minimum, and maximum corner cases.

These timing test loads require that both the inverting and non-inverting ports of the differential model refer to valid buffer model data (not terminations, supply rails, etc.). The differential test loads may also be combined with the single-ended timing test loads Rref, Cref, and Vref. Note that the single-ended timing test loads plus Vmeas are used if Rref_diff and Cref_diff are NOT supplied.

Series and Series Switch Models:

Native IBIS did not define the transition characteristics of digital switch controls. Switches were assumed to either be on or off during a simulation and I-V characteristics could be defined for either or both states. The [External Model] format allows users to control the state of a switch through the D_switch port. As with other digital ports, the use of SPICE in an [External Model] requires the user to declare D_to_A ports, to convert the D_switch signal to an analog input to the SPICE model (whether the port's state may actually change during a simulation is determined by the EDA tool used).

Series and Series_switch devices both are described under the [External Model] keyword using the reserved port names A_pos and A_neg. Note that the [Series Pin Mapping] keyword must be present and correctly used elsewhere in the file, in order to properly set the logic state of the switch. The A_pos port is defined in the first entry of the [Series Pin Mapping] keyword, and the A_neg port is defined in the pin2 entry. For series switches, the [Series Switch Groups] keyword is required.

Ports required for various Model_types:
As [External Model] makes use of the [Model] keyword's Model_type subparameter, not all digital and analog reserved ports may be needed for all Model_types. The table below defines which reserved port names are required for various Model_types.

Model_type D_drive D_enable D_receive A_signal D_switch A_pos A_neg

I/O*	X	X	X	X			
3-state*	X	X		X			
Output*, Open*	X			X			
Input			X	X			
Terminator				X			
Series						X	X
Series_switch					X	X	X



```
|[Voltage Range] }\begin{array}{llll}{\mathrm{ typ }}&{\mathrm{ min }}&{\mathrm{ max }}\\{\mathrm{ [.3 }}&{3.0}&{3.6}
[External Model]
Language VHDL-AMS
| Corner corner_name file_name circuit_name entity(architecture)
Corner Typ buffer_typ.vhd buffer(buffer_io_typ)
Corner Min buffer_min.vhd buffer(buffer_io_min)
Corner Max buffer_max.vhd buffer(buffer_io_max)
Parameters List of parameters
Parameters delay rate
Parameters preemphasis
Ports List of port names (in same order as in VHDL-AMS)
Ports A_signal A_puref A_pdref A_pcref A_gcref
Ports D_drive D_enable D_receive
|
[End External Model]
|---
 Example [External Model] using Verilog-AMS:
[Model] ExBufferVerilog
Model_type I/O
Vinh = 2.0
Vinl = 0.8
 Other model subparameters are optional
| typ min max
|
[External Model]
Language Verilog-AMS
| Corner corner_name file_name circuit_name (module)
Corner Typ buffer_typ.v buffer_io_typ
Corner Min buffer_min.v buffer_io_min
Corner Max buffer_max.v buffer_io_max
Parameters List of parameters
Parameters delay rate
Parameters preemphasis
| Ports List of port names (in same order as in Verilog-AMS)
Ports A_signal A_puref A_pdref A_pcref A_gcref
Ports D_drive D_enable D_receive
|
[End External Model]
|
```




required. If "Min" and/or "Max" data is missing, the tool may use "Typ" data in its place. However, the tool should notify the user of this action.

The circuit_name entry provides the name of the circuit to be simulated within the referenced file. For SPICE files, this is normally a ".subckt" name. For VHDL-AMS files, this is normally an "entity(architecture)" name pair. For Verilog-AMS files, this is normally a "module" name.

No character limits, case-sensitivity limits or extension conventions are required or enforced for file name and circuit_name entries. However, the total number of characters in each Corner line must comply with Section 3. Furthermore, lower-case file_name entries are recommended to avoid possible conflicts with file naming conventions under different operating systems. Case differences between otherwise identical file_name entries or circuit_name entries should be avoided. External languages may not support case-sensitive distinctions.

Parameters:

Lists names of parameters that may be passed into an external circuit file. Each Parameters assignment must match a name or keyword in the external file or language. The list of Parameters can span several lines by using the word Parameters at the start of each line. The Parameters subparameter is optional, and the external circuit must operate with default settings without any Parameters assignments.

Parameter passing is not supported in SPICE. VHDL-AMS parameters are supported using "generic" names, and Verilog-AMS parameters are supported using "parameter" names.

Ports:

Ports are interfaces to the [External Model] which are available to the user and tool at the IBIS level. They are used to connect the [External Model] to die pads. The Ports parameter is used to identify the ports of the [External Model] to the simulation tool. The port assignment is by position and the port names do not have to match exactly the names inside the external file. The list of port names may span several lines if the word Ports is used at the start of each line.

The Ports parameter is used to identify the ports of the [External Circuit] to the simulation tool. The port assignment is by position and the port names do not have to match exactly the port names in the external file. The list of port names may span several lines if the word Ports is used at the start of each line.
[External Circuit] allows any number of ports to be defined, with any names which comply with Section 3 format
requirements. Reserved port names may be used, but ONLY DIGITAL PORTS will have the pre-defined functions listed in the General Assumptions heading above. User-defined and reserved port names may be combined within the same [External Circuit].

The [Pin Mapping] keyword cannot be used with [External Circuit] in the same [Component] description.

## Digital-to-Analog/Analog-to-Digital Conversions:

These subparameters define all digital-to-analog and analog-to-digital converters needed to properly connect digital signals with the analog ports of referenced external SPICE models. These subparameters must be used when [External Circuit] references a file written in the SPICE language. They are not permitted with Verilog-AMS or VHDL-AMS external files.

D_to_A:
As assumed in [Model] and [External Model], some interface ports of [External Circuit]s expect digital input signals. As SPICE models understand only analog signals, some conversion from digital to analog format is required. For example, input logical states such as '0' or '1' must be converted to actual input voltage stimuli, such as a voltage ramp, for SPICE simulation.

The D_to_A subparameter provides information for converting a digital stimulus, such as '0' or 'l', into an analog voltage ramp (a digital 'x' input is ignored by D_to_A converters). Each digital port which carries data for conversion to analog format must have its own D_to_A declaration.

The D_to_A subparameter is followed by eight arguments:
d_port port1 port2 vlow vhigh trise tfall corner_name
The d_port entry holds the name of the digital port. This entry may contain user-defined port names or the reserved port names D_drive, D_enable, and D_switch. The port1 and port2 entries hold the SPICE analog input port names across which voltages are specified. These entries contain user-defined port names. One of these port entries must name a reference for the other port (for example, A_gnd).

Normally, portl accepts an input signal and port2 is the reference for porti. However, for an opposite polarity stimulus, portl could be connected to a voltage reference and port2 could serve as the input.

The vlow and vhigh entries accept voltage values which correspond to fully-off and fully-on states, where the vhigh value must be greater than the vlow value. For example, a 3.3 V ground-referenced buffer would list vlow as 0 V and
vhigh as 3.3 V . The trise and tfall entries are times, must be positive and define input ramp rise and fall times between 0 and 100 percent.

The corner_name entry holds the name of the external circuit corner being referenced, as listed under the Corner subparameter.

Any number of D_to_A subparameter lines is allowed, so long as each contains a unique port_name entry and at least one unique port1 or port2 entry (i.e., several D_to_A declarations may use the same reference node under porti or port2). At least one D_to_A line must be present, corresponding to the "Typ" corner model, for each digital line to be converted. Additional D_to_A lines for other corners may be omitted. In this case, the typical corner D_to_A entries will apply to all model corners and the "Typ" corner_name entry may be omitted.

A_to_D:
The A_to_D subparameter is used to generate a digital state ('0', 'I', or 'X') based on analog voltages from the SPICE model or from the pad/pin. This allows an analog signal from the external SPICE circuit to be read as a digital signal by the simulation tool. Each analog port which carries data for conversion to digital format must have its own A_to_D declaration line.

The A_to_D subparameter is followed by six arguments:
d_port port1 port2 vlow vhigh corner_name
The d_port entry lists port names to be used for digital signals going. As with D_to_A, the portl entry would contain a user-defined analog signal. Port2 would list another port name to be used as a reference. The voltage measurements are taken from the portl entry with respect to the port2 entry. These ports must also be named by the Ports subparameter.

The vlow and vhigh entries list the low and high analog threshold voltage values. The reported digital state on D_receive will be '0' if the measured voltage is lower than the vlow value, 'l' if above the vhigh value, and 'X' otherwise.

The corner_name entry holds the name of the external model corner being referenced, as listed under the Corner subparameter.

Any number of A_to_D subparameter lines is allowed, so long as each contains a unique port_name entry and at least one unique portl or port2 entry (i.e., several A_to_D declarations may use the same reference node under port1 or port2). For example, a user may wish to create additional A_to_D converters for individual analog signals to monitor common mode behaviors on differential buffers (see below).
At least one A_to_D line must be supplied corresponding to the
"Typ" corner model. Other A to_D lines for other corners may
be omitted. In this case, the typical corner D_to_A entries
will apply to all model corners.
IMPoRTANT: measurements for receivers in IBIS may be conducted
at the die pads or the pins. In such cases, the electrical
input model data comprises a "load" which affects the waveform
seen. However, for [External Circuit]s, the user may choose

```
 Parameters - Not supported in SPICE
 Ports List of port names (in same order as in SPICE)
Ports A_signal int_in int_en int_out A_control
Ports A_puref A_pdref A_pcref A_gcref
|_D_to_A d_port plortl port2 valow vhigh trise tfall corner_name
 a modified .subckt.
[End External Circuit]
|---
 Example [External Circuit] using VHDL-AMS:
[External Circuit] BUFF-VHDL
Language VHDL-AMS
Corner corner_name file_name circuit_name entity(architecture)
Corner Typ - buf\overline{fer_typ.vhd buffer\overline{b}(buffer_io_typ)}
Corner Min buffer_min.vhd bufferb(buffer_io_min)
Corner Max buffer_max.vhd bufferb(buffer_io_max)
Parameters List of parameters
Parameters delay rate
Parameters preemphasis
Ports List of port names (in same order as in VHDL-AMS)
Ports A_signal A_puref A_pdref A_pcref A_gcref A_control
Ports D_drive D_enable D_receive
|
[End External Circuit]
|---
 Example [External Circuit] using Verilog-AMS:
[External Circuit] BUFF-VERILOG
Language Verilog-AMS
| Corner corner_name file_name circuit_name (module)
Corner Typ buffer_typ.v buffer\overline{b_io_typ}
Corner Min buffer_min.v bufferb_io_min
Corner Max buffer_max.v bufferb_io_max
```

```
| Parameters List of parameters
Parameters delay rate
Parameters preemphasis
| Ports List of port names (in same order as in Verilog-AMS)
Ports A_signal A_puref A_pdref A_pcref A_gcref A_control
Ports D_drive D_enable D_receive
|
[End External Circuit]
 Interconnect Structure as an [External Circuit]
 Example [External Circuit] using SPICE

[External Circuit] BUS_SPI
Language SPICE
| Corner corner_name file_name circuit_name (.subckt name)
Corner Typ bus_typ.spi Bus_typ
Corner Min bus_min.spi Bus_min
Corner Max bus_max.spi Bus_max
| Parameters - Not supported in SPICE
| Ports are in same order as defined in SPICE
Ports vcc gnd iol io2
Ports int_ioa vccal vcca2 vssa1 vssa2
Ports int_iob vccb1 vccb2 vssb1 vssb2
 No A_to_D or D_to_A required, as no digital ports are used
[End External Circuit]
|---
 Example [External Circuit] using VHDL-AMS:
[External Circuit] BUS_VHD
Language VHDL-AMS
| Corner corner_name file_name circuit_name entity(architecture)
Corner Typ - bus.v̄d Bus(Bus_typ)
Corner Min bus.vhd Bus(Bus_min)
Corner Max bus.vhd Bus(Bus_max)
Parameters List of parameters
Parameters r1 l1
Parameters r2 l2 temp
 Ports are in the same order as defined in VHDL-AMS
Ports vcc gnd io1 io2
Ports int_ioa vccal vcca2 vssa1 vssa2
Ports int_iob vccb1 vccb2 vssb1 vssb2
|--
```



```
[Node Declarations]
 Must appear before any [Circuit Call] keyword
Die nodes:
a b c d e | List of die nodes
f g h ndl
Die pads:
pad_2a pad_2b pad_4 pad_11 | List of die pads
[End Node Declarations]
 Keywords: [Circuit Call], [End Circuit Call]
 Required: Yes, if any [External Circuit]s are present in a [Component].
Description: This keyword is used to instantiate [External Circuit]s and
 to connect their ports to the die nodes or die pads.
 Sub-Params: Signal_pin, Diff_signal_pins, Series_pins, Port_map
Usage Rules: The [Circuit Call] keyword must be followed by the name of
 an [External Circuit] that exists in the same [Component].
When a [Circuit Call] keyword defines any connections that involve one or more die pads (and consequently pins), the corresponding pins on the [Pin] list must use the reserved word "CIRCUITCALL" in the third column instead of a model name.
Each [External Circuit] must have at least one corresponding [Circuit Call] keyword. Multiple [Circuit Call] keywords may appear under a [Component] using the same [External Circuit] name, if multiple instantiations of an [External Circuit] are needed.
Signal_pin, Diff_signal_pins, or Series_pins:
The purpose of these subparameters is to identify which [External Circuit] needs to be stimulated in order to obtain a signal on a certain pin. These subparameters must be used only when the [External Circuit] that is referenced by the [Circuit Call] keyword has an effect on a pin. Only one of the three subparameters is permitted in a given [Circuit Call] keyword. The subparameters are followed by one or two pin names which are defined by the [Pin] keyword.
Signal_pin is used when the referenced [External Circuit] has a single analog signal port (I/O) connection to one pin. The subparameter is followed by a pin name that must match one of the pin names under the [Pin] keyword.
Diff_signal_pins is used when the referenced [External Circuit] describes a true differential model which has two analog signal port (I/O) connections, each to a separate pin. The subparameter is followed by two pin names, each of which must match one of the pin names under the [Pin] keyword. The first and second pin names correspond to the non-inverting and inverting signals of the differential model, respectively. The two pin names must not be identical.
```

Series_pins is used when the referenced [External Circuit] describes a Series or Series_switch model which has two analog signal port (I/O) connections to two pins. The subparameter is followed by two pin names, each of which must match one of the pin names under the [Pin] keyword. The first and second pin names correspond to the positive and negative ports of the Series or Series_switch model, respectively. However, the polarity order matters only when the model is polarity sensitive (as with the [Series Current] keyword). The two pin names must not be identical.
Port_map:
The Port_map subparameter is used to connect the ports of an [External Circuit] to die nodes or die pads.
Every occurrence of the Port_map subparameter must begin on a new line and must be followed by two arguments, the first being a port name, and the second being a die node, die pad, or a pin name.
The first argument of Port_map must contain a port name that matches one of the port names in the corresponding [External Circuit] definition. No port name may be listed more than once within a [Circuit Call] statement. Only those port names need to be listed with the Port_map subparameter which are connected to a die node or a die pad. This includes reserved and/or user-defined port names.
The second argument of the Port_map subparameter contains the name of a die node, die pad, or a pin. The names of die nodes, die pads, and pins may appear multiple times as Port_map subparameter arguments within the same [Circuit Call] statement to signify a common connection between multiple ports, such as common voltage supply.
Please note that a pin name in the second argument does not mean that the connection is made directly to the pin. Since native IBIS does not have a mechanism to declare die pads explicitly, connections to die pads are made through their corresponding pin names (listed under the [Pin] keyword). This convention must only be used with native IBIS package models where a one-to-one path between the die pads and pins is assumed. When a package model other than native IBIS is used with a [Component], the second argument of Port_map must have a die pad or die node name. These names are matched to the corresponding port name of the non-native package model by name (not by position). In this case, the package model may have an arbitrary circuit topology between the die pads and the pins. A one-to-one mapping is not required.
Examples:
For the examples below please refer to the following diagram and the example provided for the [Node Declarations] keyword.


Figure 12		
[Circuit Call] Model_A		Instantiates [External Circuit] named "A"
Signal_pin 1		
mapping port	pad/node	
Port_map A_myper	a	Port to internal node connection
Port_map A_mypur	b	Port to internal node connection
Port_map A_mysig	c	Port to internal node connection
Port_map A_mypdr	d	Port to internal node connection
Port_map A_mygcr	e	Port to internal node connection
[End Circuit Call]		
[Circuit Call] Model_B		Instantiates [External Circuit] named "B"
Signal_pin 2		
mapping port	pad/node	
Port_map A_mypur	f	Port to internal node connection
Port_map A_mysig	g	Port to internal node connection
Port_map A_mypdr	h	Port to internal node connection
Port_map A_mycnt	pad_2b	Port to explicit pad connection
[End Circuit Call]		
[Circuit Call] Model_C		Instantiates [External Circuit] named "C"
Signal_pin 3		
mapping port	pad/node	
Port_map A_mypcr	10	Port to implicit pad connection
Port_map A_mypur	10	Port to implicit pad connection
Port_map A_mysig	3	Port to implicit pad connection
Port_map A_mypdr	pad_11	Port to explicit pad connection
Port_map A_mygcr	pad_11	Port to explicit pad connection
Port_map D_mydrv	ndi	Port to internal node connection
[End Circuit Call]		
[Circuit Call] Model_D		Instantiates [External Circuit] named "D"
Signal_pin 4a		
mapping port	pad/node	
Port_map A_my_pcref	10	Port to implicit pad connection
Port_map A_my_signal	pad_4	Port to explicit pad connection

```
Port_map A_my_gcref pad_11 | Port to explicit pad connection
Port_map D_receive nd1- | Port to internal node connection
|
[End Circuit Call]
[Circuit Call] Die_Interconnect | Instantiates [External Circuit] named
| "Die_Interconnect"
mapping port pad/node
Port_map vcc 10 | Port to implicit pad connection
Port_map gnd pad_11 | Port to explicit pad connection
Port_map iol 1 | Port to implicit pad connection
Port_map o2 pad_2a | Port to explicit pad connection
Port_map vccal a | Port to internal node connection
Port_map vcca2 b | Port to internal node connection
Port_map int_ioa c | Port to internal node connection
Port_map vssāl d | Port to internal node connection
Port_map vssa2 e | Port to internal node connection
Port_map vccbl f | Port to internal node connection
Port_map int_ob g Port to internal node connection
Port_map vss\overline{b}1 h | Port to internal node connection
|
[End Circuit Call]
|===
```





## Section 7

## P A C K A GE M O D E L I N G




The [Package Model] keyword is optional. If more than the default RLC package model is desired, use the [Define Package Model] keyword.

Use the [Package Model] keyword within a [Component] to indicate the package model for that component. The specification permits .ibs files to contain the following additional list of package model keywords. Note that the actual package models can be in a separate <package_file_name>.pkg file or can exist in the IBIS files between the [Define Package Model] ...
[End Package Model] keywords for each package model that is defined. For reference, these keywords are listed below. Full descriptions follow. EDA tools that do not support these keywords will ignore all entries between the [Define Package Model] and [End Package Model] keywords.

```
[Define Package Model] Required if the [Package Model] keyword is used
[Manufacturer] (note 1)
[OEM] (note 1)
[Description] (note 1)
[Number Of Sections] (note 2)
[Number Of Pins] (note 1)
[Pin Numbers] (note 1)
[Model Data] (note 2)
[Resistance Matrix]
Optional when [Model Data] is used
[Inductance Matrix]
[Capacitance Matrix]
[Bandwidth]
[Row]
[End Model Data]
[End Package Model]
note 1)
(note 3)
(note 3)
Required (for Banded_matrix matrices only)
(note 3)
(note 2)
(note 1)
```

(note 1) Required when the [Define Package Model] keyword is used (note 2) Either the [Number Of Sections] or the [Model Data]/[End Model Data] keywords are required. Note that [Number of Sections] and the [Model Data]/[End Model Data] keywords are mutually exclusive.
(note 3) Required when the [Define Package Model] keyword is used and the [Number Of Sections] keyword is not used.

When package model definitions occur within a .ibs file, their scope is "local" -- they are known only within that .ibs file and no other. In addition, within that .ibs file, they override any globally defined package models that have the same name.

USAGE RULES FOR THE .PKG FILE:

Package models are stored in a file whose name looks like:

```
<filename>.pkg.
```

The <filename> provided must adhere to the rules given in Section 3, GENERAL

SYNTAX RULES AND GUIDELINES. Use the ".pkg" extension to identify files containing package models. The .pkg file must contain all of the required elements of a normal .ibs file, including [IBIS Ver], [File Name], [File Rev], and the [End] keywords. Optional elements include the [Date], [Source], [Notes], [Disclaimer], [Copyright], and [Comment Char] keywords. All of the elements follow the same rules as those for a normal .ibs file.

Note that the [Component] and [Model] keywords are not allowed in the . pkg file. The .pkg file is for package models only.

Keyword: [Define Package Model]
Required: Yes
Description: Marks the beginning of a package model description. Usage Rules: If the .pkg file contains data for more than one package, each section must begin with a new [Define Package Model] keyword. The length of the package model name must not exceed 40 characters in length. Blank characters are allowed. For every package model name defined under the [Package Model] keyword, there must be a matching [Define Package Model] keyword.
[Define Package Model] QS-SMT-cer-8-pin-pkgs


## Keyword: [Manufacturer]

Required: Yes
Description: Declares the manufacturer of the component(s) that use this package model.
Usage Rules: The length of the manufacturer's name must not exceed 40 characters (blank characters are allowed, e.g., Texas Instruments). In addition, each manufacturer must use a consistent name in all .ibs and .pkg files.
[Manufacturer] Quality Semiconductors Ltd.

Keyword: [OEM]
Required: Yes
Description: Declares the manufacturer of the package.
Usage Rules: The length of the manufacturer's name must not exceed 40 characters (blank characters are allowed). In addition, each manufacturer must use a consistent name in all .ibs and .pkg files.
Other Notes: This keyword is useful if the semiconductor vendor sells a single IC in packages from different manufacturers.
[OEM] Acme Packaging Co.
|

Keyword: [Description]
Required: Yes
Description: Provides a concise yet easily human-readable description of what kind of package the [Package Model] is representing.
Usage Rules: The description must be less than 60 characters in length, must fit on a single line, and may contain spaces.
[Description] 220-Pin Quad Ceramic Flat Pack

```
 Keyword: [Number Of Sections]
 Required: No
 Description: Defines the maximum number of sections that make up a 'package
 stub'. A package stub is defined as the connection between
 the die pad and the corresponding package pin; it can include
 (but is not limited to) the bondwire, the connection between
 the bondwire and pin, and the pin itself. This keyword must
 be used if a modeler wishes to describe any package stub as
 other than a single, lumped L/R/C. The sections of a package
 stub are assumed to connect to each other in a series fashion.
 Usage Rules: The argument is a positive integer greater than zero. This
 keyword, if used, must appear in the specification before the
 [Pin Numbers] keyword. The maximum number of sections
 includes sections between the Fork and Endfork subparameters.
[Number Of Sections] 3
|
==
 Keyword: [Number Of Pins]
 Required: Yes
 Description: Tells the parser how many pins to expect.
 Usage Rules: The field must be a positive decimal integer. The [Number
 Of Pins] keyword must be positioned before the [Pin Numbers]
 keyword.
[Number Of Pins] }12
===
 Keyword: [Pin Numbers]
 Required: Yes
 Description: Tells the parser the set of names that are used for the
 package pins and also defines pin ordering. If the [Number Of
 Sections] keyword is present it also lists the elements for
 each section of a pin's die to pin connection.
 Sub-Params: Len, L, R, C, Fork, Endfork
Usage Rules: Following the [Pin Numbers] keyword, the names of the pins are
 listed. There must be as many names listed as there are pins
 (as given by the preceding [Number Of Pins] keyword). Pin
 names can not exceed 5 characters in length. The first pin
 name given is the "lowest" pin, and the last pin given is the
 "highest." If the [Number Of Sections] keyword is used then
 each pin name must be followed by one or more of the legal
 subparameter combinations listed below. If the [Number Of
 Sections] keyword is not present then subparameter usage is
 NOT allowed.
 Subparameters:
 The Len, L, R, and C subparameters specify the length,
 inductance, capacitance and resistance of each section of each
 stub on a package.
 The Fork and Endfork subparameters are used to denote branches
 from the main package stub.
 Len The length of a package stub section. Lengths are
```

```
 given in terms of arbitrary 'units'.
L The inductance of a package stub section, in terms of
 'inductance/unit length'. For example, if the total
 inductance of a section is 3.0nH and the length of the
 section is 2 'units', the inductance would be listed
 as L = 1.5nH (i.e. 3.0 / 2).
C The capacitance of a package stub section, in terms of
 capacitance per unit length.
R The DC (ohmic) resistance of a package stub section,
 in terms of ohms per unit length.
Fork This subparameter indicates that the sections
 following (up to the Endfork subparameter) are part of
 a branch off of the main package stub. This
 subparameter has no arguments.
Endfork This subparameter indicates the end point of a branch.
 For every Fork subparameter there must be a
 corresponding Endfork subparameter. As with the Fork
 subparameter, the Endfork subparameter has no
 arguments.
```

Specifying a Len or $L / R / C$ value of zero is allowed. If Len $=0$ is specified, then the $L / R / C$ values are the total for that section. If a non-zero length is specified, then the total $L / R / C$ for a section is calculated by multiplying the value of the Len subparameter by the value of the $L, R$, or $C$ subparameter. However, if a non-zero length section is specified, the $L$ and $C$ for that section should be treated as distributed elements.

Using The Subparameters to Describe Package Stub Sections:
A section description begins with the Len subparameter and ends with the slash (/) character. The value of the Len, L, $R$, and $C$ subparameters and the subparameter itself are separated by an equals sign (=); white space around the equals sign is optional. The Fork and Endfork subparameters are placed between section descriptions (i.e., between the concluding slash of one section and the 'Len' parameter that starts another). A particular section description can contain no data (i.e., the description is given as 'Len = $0 /$ ').

Legal Subparameter Combinations for Section Descriptions:
A) A single Len = 0 subparameter, followed by a slash. This is used to describe a section with no data.
B) Len, and one or more of the $L, R$ and $C$ subparameters. If the Len subparameter is given as zero, then the L/R/C subparameters represent lumped elements. If the Len subparameter is non-zero, then the $L / R / C$ subparameters represent distributed elements.
C) Single Fork or Endfork subparameter. Normally, a package stub is described as several sections, with the Fork and Endfork subparameters surrounding a group of sections in the middle of the complete package stub description. However, it is legal for the Fork/Endfork subparameters to appear at the end of a section description. The package pin is connected to


```
 Keyword: [End Model Data]
 Required: Yes
 Description: Indicates the end of the formatted model data.
 Other Notes: In between the [Model Data] and [End Model Data] keywords is
 the package model data itself. The data is a set of three
 matrices: the resistance (R), inductance (L), and capacitance
 (C) matrices. Each matrix can be formatted differently (see
 below). Use one of the matrix keywords below to mark the
 beginning of each new matrix.
[End Model Data]
|==
 Keywords: [Resistance Matrix], [Inductance Matrix], [Capacitance Matrix]
 Required: [Resistance Matrix] is optional. If it is not present, its
 entries are assumed to be zero. [Inductance Matrix] and
 [Capacitance Matrix] are required.
 Sub-Params: Banded_matrix, Sparse_matrix, or Full_matrix
 Description: The subparameters mark the beginning of a matrix, and specify
 how the matrix data is formatted.
 Usage Rules: For each matrix keyword, use only one of the subparameters.
 After each of these subparameters, insert the matrix data in
 the appropriate format. (These formats are described in
 detail below.)
 Other Notes: The resistance, inductance, and capacitance matrices are also
 referred to as "RLC matrices" within this specification.
 When measuring the entries of the RLC matrices, either with
 laboratory equipment or field-solver software, currents are
 defined as ENTERING the pins of the package from the board
 (General Syntax Rule #11). The corresponding voltage drops
 are to be measured with the current pointing "in" to the "+"
 sign and "out" of the "-" sign.
 I1 +-----+ + I2
 It is important to observe this convention in order to get the
 correct signs for the mutual inductances and resistances.
[Resistance Matrix] Banded_matrix
[Inductance Matrix] Sparse_matrix
[Capacitance Matrix] Full_matrix
===
 RLC MATRIX NOTES:
 For each [Resistance Matrix], [Inductance Matrix], or [Capacitance Matrix]
 a different format can be used for the data. The choice of formats is
 provided to satisfy different simulation accuracy and speed requirements.
 Also, there are many packages in which the resistance matrix can have no
 coupling terms at all. In this case, the most concise format
 (Banded_matrix) can be used.
```

There are two different ways to extract the coefficients that are reported in the capacitance and inductance matrices. For the purposes of this specification, the coefficients reported in the capacitance matrices shall be the 'electrostatic induction coefficients' or 'Maxwell's capacitances'. The Maxwell capacitance Kij is defined as the charge induced on conductor "j" when conductor "i" is held at 1 volt and all other conductors are held at zero volts. Note that Kij ( when $i /=j$ ) will be a negative number and should be entered as such. Likewise, for the inductance matrix the coefficients for Lij are defined as the voltage induced on conductor "j" when conductor "i"'s current is changed by lamp/sec and all other conductors have no current change.

One common aspect of all the different formats is that they exploit the symmetry of the matrices they describe. This means that the entries below the main diagonal of the matrix are identical to the corresponding entries above the main diagonal. Therefore, only roughly one-half of the matrix needs to be described. By convention, the main diagonal and the UPPER half of the matrix are provided.

In the following text, we use the notation [I, J] to refer to the entry in row I and column $J$ of the matrix. Note that $I$ and $J$ are allowed to be alphanumeric strings as well as integers. An ordering of these strings is defined in the [Pin Numbers] section. In the following text, "Row l" means the row corresponding to the first pin.

Also note that the numeric entries of the RLC matrices are standard IBIS floating point numbers. As such, it is permissible to use metric "suffix" notation. Thus, an entry of the $C$ matrix could be given as $1.23 e-12$ or as 1.23 p or 1.23 pF .

Full_matrix:
When the Full_matrix format is used, the couplings between every pair of elements is specified explicitly. Assume that the matrix has $N$ rows and $N$ columns. The Full_matrix is specified one row at a time, starting with Row 1 and continuing down to Row $N$.

Each new row is identified with the Row keyword.
$===============================================================================2$

## Keyword: [Row]

Required: Yes
Description: Indicates the beginning of a new row of the matrix.
Usage Rules: The argument must be one of the pin names listed under the [Pin Numbers] keyword.
[Row] 3
$=============================================================================$
Following a [Row] keyword is a block of numbers that represent the entries for that row. Suppose that the current row is number M. Then the first number listed is the diagonal entry, [M,M]. Following this number are the entries of the upper half of the matrix that belong to row $M:[M, M+1]$, $[M, M+2], \ldots$ up to $[M, N]$.

For even a modest-sized package, this data will not all fit on one line. You can break the data up with new-line characters so that the 80 character line length limit is observed.

An example: suppose the package has 40 pins and that we are currently working on Row 19. There is 1 diagonal entry, plus $40-19=21$ entries in the upper half of the matrix to be specified, for 22 entries total. The data might be formatted as follows:
[Row] 19

$5.67 e-9$	$1.1 e-9$	$0.8 e-9$	$0.6 e-9$	$0.4 e-9$	$0.2 e-9$	$0.1 e-9$	$0.09 e-9$
$8 e-10$	$7 e-10$	$6 e-10$	$5 e-10$	$4 e-10$	$3 e-10$	$2 e-10$	$1 e-10$
$9 e-11$	$8 e-11$	$7 e-11$	$6 e-11$	$5 e-11$	$4 e-11$		

In the above example, the entry $5.67 \mathrm{e}-9$ is on the diagonal of row 19.
Observe that Row 1 always has the most entries, and that each successive row has one fewer entry than the last; the last row always has just a single entry.

Banded_matrix:
A Banded_matrix is one whose entries are guaranteed to be zero if they are farther away from the main diagonal than a certain distance, known as the "bandwidth." Let the matrix size be $N \mathrm{x}$ M, and let the bandwidth be B. An entry [I,J] of the matrix is zero if:

$$
|I-J|>B
$$

where $|$.$| denotes the absolute value.$
The Banded_matrix is used to specify the coupling effects up to B pins on either side. Two variations are supported. One allows for the coupling to circle back on itself. This is technically a simple form of a bordered block diagonal matrix. However, its data can be completely specified in terms of a Banded_matrix for an $N$ x M matrix consisting of $N$ rows and $M=N+B$ columns. The second variation is just in terms of an $N X N$ matrix where no circle back coupling needs to be specified.

The bandwidth for a Banded_matrix must be specified using the [Bandwidth] keyword:
$===============================================================================2$
Keyword: [Bandwidth]
Required: Yes (for Banded_matrix matrices only) Description: Indicates the bandwidth of the matrix. Usage Rules: The bandwidth field must be a non-negative integer. This keyword must occur after the [Resistance Matrix], etc., keywords, and before the matrix data is given.
[Bandwidth] 10
|
$============================================================================$
Specify the banded matrix one row at a time, starting with row 1 and working up to higher rows. Mark each row with the [Row] keyword, as above. As before, symmetry is exploited: do not provide entries below the main diagonal.

For the case where coupling can circle back on itself, consider a matrix of N pins organized into N rows $1 \ldots \mathrm{~N}$ and M columns $1 \ldots \mathrm{~N}, 1 \ldots \mathrm{~B}$. . . B . first row only needs to specify the entries [1,1] through [1,1+B] since all
other entries are guaranteed to be zero. The second row will need to specify the entries $[2,2]$ through $[2,2+B]$, and so on. For row $K$ the entries $[K, K]$ through $[K, K+B]$ are given when $K+B$ is less than or equal to the size of the matrix $N$. When $K+B$ exceeds $N$, the entries in the last columns 1 ... B specify the coupling to the first rows. For row $K$, the entries [K,K] ... [K,N] [K,1] ... [K,R] are given where $R=$ $\bmod (\mathrm{K}+\mathrm{B}-1, \mathrm{~N})+1$. All rows will contain $\mathrm{B}+1$ entries. To avoid redundant entries, the bandwidth is limited to $B<=i n t((N-1) / 2)$.

For the case where coupling does not circle back on itself, the process is modified. Only N columns need to be considered. When $K+B$ finally exceeds the size of the matrix $N$, the number of entries in each row starts to decrease; the last row (row $N$ ) has only 1 entry. This construction constrains the bandwidth to $\mathrm{B}<\mathrm{N}$.

As in the Full_matrix, if all the entries for a particular row do not fit into a single $\overline{8} 0$-character line, the entries can be broken across several lines.

It is possible to use a bandwidth of 0 to specify a diagonal matrix (a matrix with no coupling terms.) This is sometimes useful for resistance matrices.

Sparse_matrix:
A Sparse_matrix is expected to consist mostly of zero-valued entries, except for a few nonzeros. Unlike the Banded_matrix, there is no restriction on where the nonzero entries can occur. This feature is useful in certain situations, such as for Pin Grid Arrays (PGAs).

As usual, symmetry can be exploited to reduce the amount of data by eliminating from the matrix any entries below the main diagonal.

An $N$ x $N$ Sparse_matrix is specified one row at a time, starting with row 1 and continuing down to row $N$. Each new row is marked with the [Row] keyword, as in the other matrix formats.

Data for the entries of a row is given in a slightly different format, however. For the entry [I, J] of a row, it is necessary to explicitly list the name of pin $J$ before the value of the entry is given. This specification serves to indicate to the parser where the entry is put into the matrix.

The proper location is not otherwise obvious because of the lack of restrictions on where nonzeros can occur. Each (Index, Value) pair is listed upon a separate line. An example follows. Suppose that row 10 has nonzero entries [10,10], [10,11], [10,15], and [10,25]. The following row data would be provided:
[Row] 10

$\mid$ Index	Value
10	$5.7 e-9$
11	$1.1 e-9$
15	$1.1 e-9$
25	$1.1 e-9$

Note that each of the column indices listed for any row must be greater than or equal to the row index, because they always come from the upper half of
the matrix. When alphanumeric pin names are used, special care must be taken to ensure that the ordering defined in the [Pin Numbers] section is observed.

With this convention, please note that the Nth row of an $N \mathrm{x} N$ matrix has just a single entry (the diagonal entry).

```
===
```

    Keyword: [End Package Model]
    Required: Yes
    Description: Marks the end of a package model description.
Usage Rules: This keyword must come at the end of each complete package
model description.
Optionally, add a comment after the [End Package Model]
keyword to clarify which package model has just ended. For
example,
[Define Package Model] My_Model
... content of model ...
[End Package Model] | end of My_Model
[End Package Model]

Package Model Example
The following is an example of a package model file following the
package modeling specifications. For the sake of brevity, an 8-pin package
has been described. For purposes of illustration, each of the matrices is
specified using a different format.

[IBIS Ver] 4.1
[File Name] example.pkg
[File Rev] 0.1
[Date] August 1, 2003
[Source] Quality Semiconductors. Data derived from Helmholtz Inc.'s
field solver using 3-D Autocad model from Acme Packaging.
[Notes] Example of couplings in packaging
[Disclaimer] The models given below may not represent any physically
realizable 8-pin package. They are provided solely for the
purpose of illustrating the .pkg file format.
|

[Define Package Model] QS-SMT-cer-8-pin-pkgs
[Manufacturer] Quality Semiconductors Ltd.
[OEM] Acme Package Co.
[Description] 8-Pin ceramic SMT package
[Number Of Pins]
8
|

```
[Pin Numbers]
1
2
3
4
5
6
7
8
[Model Data]
 The resistance matrix for this package has no coupling
[Resistance Matrix] Banded_matrix
[Bandwidth]
[Row] 1
10.0
[Row] 2
15.0
[Row] 3
15.0
[Row] 4
10.0
[Row] 5
10.0
[Row] 6
15.0
[Row] 7
15.0
[Row] 8
10.0
|
[Inductance Matrix] Full_matrix
[Row] 1
3.04859e-07 4.73185e-08 1.3428e-08 6.12191e-09
1.74022e-07 7.35469e-08 2.73201e-08 1.33807e-08
[Row] 2
3.04859e-07 4.73185e-08 1.3428e-08 7.35469e-08
1.74022e-07
[Row] 3
3.04859e-07 4.73185e-08 2.73201e-08 7.35469e-08
1.74022e-07 7.35469e-08
[Row] 4
3.04859e-07 1.33807e-08 2.73201e-08 7.35469e-08
1.74022e-07
[Row] 5
4.70049e-07 1.43791e-07 5.75805e-08 2.95088e-08
[Row] 6
4.70049e-07 1.43791e-07 5.75805e-08
[Row] 7
4.70049e-07 1.43791e-07
[Row] 8
4.70049e-07
The capacitance matrix has sparse coupling
```

```
|
[Capacitance Matrix] Sparse_matrix
[Row] 1
1 2.48227e-10
2 -1.56651e-11
5 -9.54158e-11
6 -7.15684e-12
[Row] 2
2 2.51798e-10
3 -1.56552e-11
5 -6.85199e-12
6 -9.0486e-11
7 -6.82003e-12
[Row] 3
3 2.51798e-10
4 -1.56651e-11
6 -6.82003e-12
7 -9.0486e-11
8 -6.85199e-12
[Row] 4
4 2.48227e-10
7 -7.15684e-12
8 -9.54158e-11
[Row] 5
5 1.73542e-10
6 -3.38247e-11
[Row] 6
6 1.86833e-10
7 -3.27226e-11
[Row] 7
7 1.86833e-10
8 -3.38247e-11
[ROW] 8
8 1.73542e-10
[End Model Data]
[End Package Model]
|
```



```
|===
```

```
===
===
```


## Section 8

```
E L E C T R I C A L
B O A R D
D E S C R I P T I O N
```




A "board level component" is the generic term to be used to describe a printed circuit board (PCB) or substrate which can contain components or even other boards, and which can connect to another board through a set of user visible pins. The electrical connectivity of such a board level component is referred to as an "Electrical Board Description". For example, a SIMM module is a board level component that is used to attach several DRAM components on the PCB to another board through edge connector pins. An electrical board description file (a .ebd file) is defined to describe the connections of a board level component between the board pins and its components on the board.

A fundamental assumption regarding the electrical board description is that the inductance and capacitance parameters listed in the file are derived with respect to well-defined reference plane(s) within the board. Also, this current description does not allow one to describe electrical (inductive or capacitive) coupling between paths. It is recommended that if coupling is an issue, then an electrical description be extracted from the physical parameters of the board.

What is, and is not, included in an Electrical Board Description is defined by its boundaries. For the definition of the boundaries, see the Description section under the [Path Description] Keyword.

USAGE RULES:

A .ebd file is intended to be a stand-alone file, not associated with any .ibs file. Electrical Board Descriptions are stored in a file whose name looks like <filename>.ebd, where <filename> must conform to the naming rules given in the General Syntax Section of this specification. The .ebd extension is mandatory.

CONTENTS:

A .ebd file is structured similar to a standard IBIS file. It must contain the following keywords, as defined in the IBIS specification: [IBIS Ver], [File Name], [File Rev], and [End]. It may also contain the following optional keywords: [Comment Char], [Date], [Source], [Notes], [Disclaimer], and [Copyright]. The actual board description is contained between the keywords [Begin Board Description] and [End Board Description], and includes the keywords listed below:
[Begin Board Description]
[Manufacturer]
[Number Of Pins]
[Pin List]
[Path Description]
[Reference Designator Map]
[End Board Description]

```
 More than one [Begin Board Description]/[End Board Description] keyword pair
 is allowed in a .ebd file.
==
 Keyword: [Begin Board Description]
 Required: Yes
 Description: Marks the beginning of an Electrical Board Description.
 Usage Rules: The keyword is followed by the name of the board level
 component. If the .ebd file contains more than one [Begin
 Board Description] keyword, then each name must be unique.
 The length of the component name must not exceed 40 characters
 in length, and blank characters are allowed. For every
 [Begin Board Description] keyword there must be a matching
 [End Board Description] keyword.
[Begin Board Description] 16Meg X 8 SIMM Module
```



```
 Keyword: [Manufacturer]
 Required: Yes
 Description: Declares the manufacturer of the components(s) that use this
 .ebd file.
 Usage Rules: Following the keyword is the manufacturer's name. It must not
 exceed 40 characters, and can include blank characters. Each
 manufacturer must use a consistent name in all .ebd files.
[Manufacturer] Quality SIMM Corp.
==
 Keyword: [Number Of Pins]
 Required: Yes
 Description: Tells the parser the number of pins to expect. Pins are any
 externally accessible electrical connection to the component.
 Usage Rules: The field must be a positive decimal integer. Note: The
 simulator must not limit the Number Of Pins to any value less
 than 1,000. The [Number Of Pins] keyword must be positioned
 before the [Pin List] keyword.
Number Of Pins] 128
==
 Keyword: [Pin List]
 Required: Yes
Description: Tells the parser the pin names of the user accessible pins.
 It also informs the parser which pins are connected to power
 and ground.
 Sub-Params: signal_name
Usage Rules: Following the [Pin List] keyword are two columns. The first
 column lists the pin name while the second lists the data book
 name of the signal connected to that pin. There must be as
 many pin_name/signal_name rows as there are pins given by the
 preceding [Number Of Pins] keyword. Pin names must be the
 alphanumeric external pin names of the part. The pin names
 cannot exceed eight characters in length. Any pin associated
 with a signal name that begins with "GND" or "POWER" will be
 interpreted as connecting to the boards ground or power plane.
 In addition, NC is a legal signal name and indicates that the
```



```
Sub-Params: Len, L, R, C, Fork, Endfork, Pin, Node
Usage Rules: Each individual connection path (user pin to node(s))
description begins with the [Path Description] keyword and a
path name, followed by the subparameters used to describe the
path topology and the electrical characteristics of each
section of the path. The path name must not exceed 40
characters, blanks are not allowed, and each occurrence of the
[Path Description] keyword must be followed by a unique path
name. Every signal pin (pins other than POWER, GND or NC)
must appear in one and only one path description per [Begin
Board Description]/[End Board Description] pair. Pin names do
not have to appear in the same order as listed in the [Pin
List] table. The individual subparameters are broken up into
those that describe the electrical properties of a section,
and those that describe the topology of a path.
Section Description Subparameters:
The Len, L, R, and C subparameters specify the length, the series inductance, resistance, and the capacitance to ground of each section in a path description.
Len The physical length of a section. Lengths are given in terms of arbitrary 'units'. Any non-zero length requires that the parameters that follow must be interpreted as distributed elements by the simulator.
\(L \quad\) The series inductance of a section, in terms of 'inductance/unit length'. For example, if the total inductance of a section is 3.0 nH and the length of the section is 2 'units', the inductance would be listed as \(L=1.5 \mathrm{nH}\) (i.e. \(3.0 / 2\)).
C The capacitance to ground of a section, in terms of capacitance per unit length.
\(R \quad\) The series DC (ohmic) resistance of a section, in terms of ohms per unit length.
Topology Description Subparameters:
The Fork and Endfork subparameters denote branches from the main pin-to-node or pin-to-pin connection path. The Node subparameter is used to reference the pin of a component or board as defined in a .ibs or .ebd file. The Pin subparameter is used to indicate the point at which a path connects to a user visible pin.
Fork This subparameter indicates that the sections following (up to the Endfork subparameter) are part of a branch off of the main connection path. This subparameter has no arguments.
Endfork This subparameter indicates the end point of a branch. For every Fork subparameter there must be a corresponding Endfork subparameter. As with the Fork subparameter, the Endfork subparameter has no arguments. The Fork and Endfork parameters must appear on separate lines.
Node reference_designator.pin
This subparameter is used when the connection path connects to a pin of another, externally defined
```

component. The arguments of the Node subparameter indicate the pin and reference designator of the external component. The pin and reference designator portions of the argument are separated by a period ("."). The reference designator is mapped to an external component description (another .ebd file or .ibs file) by the [Reference Designator Map] Keyword. Note that a Node MUST reference a model of a passive or active component. A Node is not an arbitrary connection point between two elements or paths. Pin This subparameter is used to mark the point at which a path description connects to a user accessible pin. Every path description must contain at least one occurrence of the Pin subparameter. It may also contain the reserved word NC. The value of the Pin subparameter must be one of the pin names listed in the [Pin List] section.

Note: The reserved word NC can also be used in path descriptions in a similar manner as the subparameters in order to terminate paths. This usage is optional.

Using The Subparameters to Describe Paths:

A section description begins with the Len subparameter and ends with the slash (/) character. The value of the Len, L, $R$, and $C$ subparameters and the subparameter itself are separated by an equals sign (=); white space around the equals sign is optional. The Fork, Endfork, Node and Pin subparameters are placed between section descriptions (i.e., between the concluding slash of one section and the 'Len' parameters that starts another). The arguments of the Pin and Node subparameter are separated by white space.

Specifying a Len or L/R/C value of zero is allowed. If Len $=0$ is specified, then the $L / R / C$ values are the total for that section. If a non-zero length is specified, then the total $L / R / C$ for a section is calculated by multiplying the value of the Len subparameter by the value of the $L, R$, or $C$ subparameter. However, as noted below, if a non-zero length is specified, that section MUST be interpreted as distributed elements.

Legal Subparameter Combinations for Section Descriptions:
A) Len, and one or more of the $L, R$ and $C$ subparameters. If the Len subparameter is given as zero, then the L/R/C subparameters represent lumped elements. If the Len subparameter is non-zero, then the $L / R / C$ subparameters represent distributed elements and both $L$ and $C$ must be specified, $R$ is optional. The segment Len ..../ must not be split; the whole segment must be on one line.
B) The first subparameter following the [Path Description] keyword must be 'Pin', followed by one or more section descriptions. The path description can terminate in a Node, another pin or the reserved word, NC. However, NC may be optionally omitted.

```
 Dealing With Series Elements:
 A discrete series R or L component can be included in a path
 description by defining a section with Len=0 and the proper R
 or L value. A discrete series component can also be included
 in a path description by writing two back to back node
 statements that reference the same component (see the example
 below). Note that both ends of a discrete, two terminal
 component MUST be contained in a single [Path Description].
 Connecting two separate [Path Description]s with a series
 component is not allowed.
An Example Path For a SIMM Module:
[Path Description] CAS_2
Pin J25
Len \(=0.5 \mathrm{~L}=8.35 \mathrm{n} \quad \mathrm{C}=3.34 \mathrm{p} \mathrm{R}=0.01 /\)
Node u21.15
Len \(=0.5 \mathrm{~L}=8.35 \mathrm{n} \quad \mathrm{C}=3.34 \mathrm{p} \mathrm{R}=0.01 /\)
Node u22.15
Len \(=0.5 \mathrm{~L}=8.35 \mathrm{n} \quad \mathrm{C}=3.34 \mathrm{p} \mathrm{R}=0.01 /\)
Node u23.15
```



```
A Description Using The Fork and Endfork Subparameters:
[Path Description] PassThrul
Pin B5
Len \(=0 \quad \mathrm{~L}=2.0 \mathrm{n} /\)
Len \(=2.1 \mathrm{~L}=6.0 \mathrm{n} \mathrm{C}=2.0 \mathrm{p} /\)
Fork
Len \(=1.0 \mathrm{~L}=1.0 \mathrm{n} \mathrm{C}=2.0 \mathrm{p} /\)
Node u23.16
Endfork
Len \(=1.0 \mathrm{~L}=6.0 \mathrm{n} \mathrm{C}=2.0 \mathrm{p} /\)
Pin A5
|
```



A Description Including a Discrete Series Element:
[Path Description] sig1
Pin B27
Len $=0 \quad \mathrm{~L}=1.6 \mathrm{n} /$
Len $=1.5 \mathrm{~L}=6.0 \mathrm{n} \mathrm{C}=2.0 \mathrm{p} /$
Node R2.1
Node R2. 2
Len $=0.25 \mathrm{~L}=6.0 \mathrm{n} \mathrm{C}=2.0 \mathrm{p} /$
Node U25.6


Keyword: [Reference Designator Map]
Required: Yes, if any of the path descriptions use the Node subparameter Description: Maps a reference designator to a component or electrical board description contained in an .ibs or .ebd file.
Usage Rules: The [Reference Designator Map] keyword must be followed by a list of all of the reference designators called out by the Node subparameters used in the various path descriptions. Each reference designator is followed by the name of the .ibs or .ebd file containing the electrical description of the component or board, then the name of the component itself as given by the .ibs or .ebd file's [Component] or [Begin Board


$$
\begin{aligned}
& \text { ================================================================================12} \\
& \text { ==============================================================================12}
\end{aligned}
$$

```
 NOTESSOND DATA DERIV A T I ON M E T H O D
==
==
This section explains how data values are derived. It describes certain assumed parameter and table extraction conditions if they are not explicitly specified. It also describes the allocation of data into the "typ", "min", and "max" columns under variations of voltage, temperature, and process.
The required "typ" column for all data represents typical operating conditions. For most [Model] keyword data, the "min" column describes slow, weak performance, and the "max" column describes the fast, strong performance. It is permissible to use slow, weak components or models to derive the data for the "min" column, and to use fast, strong components or models to derive the data in the "max" columns under the corresponding voltage and temperature derating conditions for these columns. It is also permissible to use typical components or models derated by voltage and temperature and optionally apply proprietary "X\%" and "Y\%" factors described later for further derating. This methodology has the nice feature that the data can be derived either from semiconductor vendor proprietary models, or typical component measurement over temperature/voltage.
```

The voltage and temperature keywords and optionally the process models control the conditions that define the "typ", "min", and "max" column entries for all I-V table keywords [Pulldown], [Pullup], [GND Clamp], and [POWER Clamp]; all [Ramp] subparameters dV/dt_r and dV/dt_f; and all waveform table keywords and subparameters [Rising Waveform], [Falling Waveform], V_fixture, V_fixture_min, and V_fixture_max.

The voltage keywords that control the voltage conditions are [Voltage Range], [Pulldown Reference], [Pullup Reference], [GND Clamp Reference], and [POWER Clamp Reference]. The entries in the "min" columns contain the smallest magnitude voltages, and the entries in the "max" columns contain the largest magnitude voltages.

The optional [Temperature Range] keyword will contain the temperature which causes or amplifies the slow, weak conditions in the "min" column and the temperature which causes or amplifies the fast, strong conditions in the "max" column. Therefore, the "min" column for [Temperature Range] will contain the lowest value for bipolar models (TTL and ECL) and the highest value for CMOS models. Default values described later are assumed if temperature is not specified.

The "min" and "max" columns for all remaining keywords and subparameters will contain the smallest and largest magnitude values. This applies to the [Model] subparameter C_comp as well even if the correlation to the voltage, temperature, and process variations are known because information about such correlation is not available in all cases.

C_comp is considered an independent variable. This is because C_comp includes bonding pad capacitance, which does not necessarily track
fabrication process variations. The conservative approach to using IBIS
data will associate large C_comp values with slow, weak models, and the small C_comp values with fast, strong models.

The default temperatures under which all I-V tables are extracted are provided below. The same defaults also are stated for the [Ramp] subparameters, but they also apply for the waveform keywords.

The stated voltage ranges for $I-V$ tables cover the most common, single supply cases. When multiple supplies are specified, the voltages shall extend similarly to values that handle practical extremes in reflected wave simulations.

For the [Ramp] subparameters, the default test load and voltages are provided. However, the test load can be entered directly by the R_load subparameter. The allowable test loads and voltages for the waveform keywords are stated by required and optional subparameters; no defaults are needed. Even with waveform keywords, the [Ramp] keyword continues to be required so that the IBIS model remains functional in situations which do not support waveform processing.

The following discussion lists test details and default conditions.

1) I-V Tables:

I-V tables for CMOS models: typ = typical voltage, typical temp deg $C$, typical process min $=$ minimum voltage, max temp deg $C$, typical process, minus "X\%" max = maximum voltage, min temp deg $C$, typical process, plus "X\%"

I-V tables for bipolar models:
typ = typical voltage, typical temp deg C, typical process min $=$ minimum voltage, min temp deg $C$, typical process, minus "X\%" max $=$ maximum voltage, max temp deg $C$, typical process, plus "X\%"

Nominal, min, and max temperature are specified by the semiconductor vendor. The default range is 50 deg C nom, 0 deg C min, and 100 deg C max temperatures.

X\% should be statistically determined by the semiconductor vendor based on numerous fab lots, test chips, process controls, etc.. The value of $x$ need not be published in the IBIS file, and may decrease over time as data on the I/O buffers and silicon process increases.

Temperatures are junction temperatures.
2) Voltage Ranges:

Points for each table must span the voltages listed below:

Table	LOw Voltage	High Voltage
--------	--------	---------
[Pulldown]	GND - POWER	POWER + POWER
[Pullup]	GND - POWER	POWER + POWER
[GND Clamp]	GND - POWER	GND + POWER
[POWER Clamp]	POWER	POWER + POWER
[Series Current]	GND - POWER	GND + POWER
[Series MOSFET]	GND	GND + POWER

As described in the [Pulldown Reference] keyword section, the I-V tables of the [Pullup] and the [POWER Clamp] structures are 'Vcc relative',
using the equation: Vtable $=$ Vcc - Voutput.
For example, a model with a 5 V power supply voltage should be characterized between $(0-5)=-5 \mathrm{~V}$ and $(5+5)=10 \mathrm{~V}$; and a model with a 3.3 V power supply should be characterized between $(0-3.3)=-3.3 \mathrm{~V}$ and $(3.3+3.3)=6.6 \mathrm{~V}$ for the [Pulldown] table.

When tabulating output data for $E C L$ type models, the voltage points must span the range of Vcc to Vcc - 2.2 V . This range applies to both the [Pullup] and [Pulldown] tables. Note that this range applies ONLY when characterizing an ECL output.

These voltage ranges must be spanned by the IBIS data. Data derived from lab measurements may not be able to span these ranges as such and so may need to be extrapolated to cover the full range. This data must not be left for the simulator to provide.
3) Ramp Rates:

The following steps assume that the default load resistance of 50 ohms is used. There may be models that will not drive a load of only 50 ohms into any useful level of dynamics. In these cases, use the semiconductor vendor's suggested (nonreactive) load and add the load subparameter to the [Ramp] specification.

The ramp rate does not include packaging but does include the effects of the C_comp parameter; it is the intrinsic output stage rise and fall time only.

The ramp rates (listed in AC characteristics below) should be derived as follows:
a. If starting with the silicon model, remove all packaging. If starting with a packaged model, perform the measurements as outlined below. Then use whatever techniques are appropriate to derive the actual, unloaded rise and fall times.
b. If: The Model_type is one of the following: Output, I/O, or 3-state (not open or ECL types);
Then: Attach a 50 ohm resistor to GND to derive the rising edge ramp. Attach a 50 ohm resistor to POWER to derive the falling edge ramp.

If: The Model_type is Output_ECL, I/O_ECL, 3-state_ECL;
Then: Attāch a 50 ohm resistor to the termination voltage (Vterm = VCC - 2 V ). Use this load to derive both the rising and falling edges.

If: The Model_type is either an Open_sink type or Open_drain type;
Then: Attach either a 50 ohm resistor or the semiconductor vendor suggested termination resistance to either POWER or the suggested termination voltage. Use this load to derive both the rising and falling edges.

If: The Model_type is an Open_source type;
Then: Attāch either a 50 ohm resistor or the semiconductor vendor suggested termination resistance to either GND or the suggested termination voltage. Use this load to derive both the rising and falling edges.
c. Due to the resistor, output swings will not make a full transition as expected. However the pertinent data can still be collected as follows:

1) Determine the $20 \%$ to $80 \%$ voltages of the 50 ohm swing.
2) Measure this voltage change as "dV".
3) Measure the amount of time required to make this swing "dt".
d. Post the value as a ratio "dV/dt". The simulator extrapolates this value to span the required voltage swing range in the final model.
e. Typ, Min, and Max must all be posted, and are derived at the same extremes as the I-V tables, which are:

Ramp rates for CMOS models:
typ = typical voltage, typical temp deg $C$, typical process min $=$ minimum voltage, max temp deg $C$, typical process, minus "Y\%"


Ramp rates for bipolar models:
typ = typical voltage, typical temp deg C, typical process min $=$ minimum voltage, min temp deg $C$, typical process, minus "Y\%" $\max =$ maximum voltage, max temp deg $C$, typical process, plus "Y\%"
where nominal, min, and max temp are specified by the semiconductor vendor. The preferred range is $50 \mathrm{deg} C$ nom, $0 \mathrm{deg} C \mathrm{~min}$, and 100 deg $C$ max temperatures.

Note that the derate factor, "Y\%", may be different than that used for the I-V table data. This factor is similar to the $\mathrm{X} \%$ factor described above. As in the case of I-V tables, temperatures are junction temperatures.
f. During the I-V measurements, the driving waveform should have a rise/fall time fast enough to avoid thermal feedback. The specific choice of sweep time is left to the modeling engineer.
4) Transit Time Extractions:

The transit time parameter is indirectly derived to be the value that produces the same effect as that extracted by the reference measurement or reference simulation.

The test circuit consists of the following:
a) A pulse source (10 ohms, 1 ns at full duration ramp) or equivalent and transitioning between Vcc and 0 V,
b) A 50 ohm, 1 ns long trace or transmission line,
c) A 500 ohm termination to the ground clamp reference voltage for TTgnd extraction and to the power clamp reference voltage for TTpower extraction (to provide a convenient, minimum loading 450 ohm - 50 ohm divider for high-speed sampling equipment observation of the component denoted as the device under test), and
d) The device under test (DUT).


```
\(1 \mathrm{~ns}, 10\) ohm
Source Signal
Choose TTgnd that matches the measured delay with the IBIS model simulation delay
```


## Example of TTgnd Extraction Setup

The TTgnd extraction will be done only if a [GND Clamp] table exists. A high to low transition that produces a positive "glitch", perhaps several nanoseconds later indicates a stored charge in the ground clamp circuit. The test circuit is simulated using the complete IBIS model with C_comp and the Ct model defined under the [TTgnd] and [TTpower] keywords. An effective TTgnd value that produces a "glitch" with the same delay is extracted.

Similarly, the TTpower extraction will be done only if a [POWER Clamp] table exists. A low to high transition that produces a negative "glitch", perhaps several nanoseconds later indicates a stored charge in the power clamp circuit. An effective TTpower value that produces a glitch with the same delay is extracted.

It is preferred to do the extractions with the package parameters removed. However, if the extraction is done from measurements, then the package model should be included in the IBIS based simulation.
5) Series MOSFET Table Extractions:

An extraction circuit is set up according to the figure below. The switch is configured into the 'On' state. This assumes that the Vcc voltage will be applied to the gate by internal logic. Designate one pin of the switch as the source node, and the other pin as the drain node. The Table Currents designated as Ids are derived directly as a function of the Vs voltage at the source node as Vs is varied from 0 to Vcc. This voltage is entered as a Vgs value as a consequence of the relationship Vtable $=$ Vgs $=$ Vcc - Vs. Vds is held constant by having a fixed voltage Vds between the drain and source nodes. Note, Vds > 0 V. The current flowing into the drain is tabulated in the table for the corresponding Vs points.


```
Example of Series MOSFET Table Extraction
It is expected that this data will be created from semiconductor vendor proprietary silicon models, and later correlated with actual component measurement.
```

Filename: ver4_1.doc
Directory: C:\IBIS\Specs\Ver4_1
Template: C:\Documents and Settings\amuranyi.AMR\Application
Data\Microsoft\Templates\Normal.dot
Title:
IBIS
Subject:
Author:
Arpad Muranyi
Keywords:
Comments:
Creation Date: $\quad$ 6/24/2003 11:47 AM
Change Number: 13
Last Saved On: 6/24/2003 1:21 PM
Last Saved By: Arpad Muranyi
Total Editing Time: 96 Minutes
Last Printed On: $\quad$ 6/24/2003 1:46 PM
As of Last Complete Printing
Number of Pages: 133
Number of Words: $\quad 59,110$ (approx.)
Number of Characters: 295,554 (approx.)

