IBIS 4.1 Macros for Simulator
Independent Models

DAC2005 IBIS Summit
Anaheim, CA
June 14, 2005

Arpad Muranyi

Barry Katz, Mike LaBonte, Scott McMorrow,
Donald Telian, Todd Westerhoff, Ken Willis

Background

At the January 31, 2005 IBIS Open Forum
Summit Donald Telian (Cadence) presented:

“"Modeling Complex IO with IBIS 4.1"

The subject on the macro modeling idea was
repeated at various meetings since then:
IBIS Summit (March 11, 2005)
Cadence webinar (March 23, 2005)
SPI Workshop (May 10-13, 2005)

The proposal of the presentation generated
vigorous discussions on the IBIS email
reflectors and at various meetings

http://www.eda.org/ibis/summits/jan05/telian.pdf
http://www.eda.org/ibis/futures/ibis-futures-issues-mm.pdf

The real problem

IBIS is running out of steam for advanced
buffer modeling

took a long time to get [Driver Schedule] to work for
pre/de-emphasis buffers

other types of advanced buffers may follow soon
HSPICE (and others) allow tricks around B-element
strict IBIS simulators can’t do anything about it
Cadence can do similar tricks in DML (K-SPICE)

Many SI engineers don’t want to fiddle with

tricks, so they prefer transistor level models
amplified by the common belief that transistor models
are more accurate than behavioral models

The *-AMS extensions in IBIS are too advanced
learning a new language is a deterrent factor to many
not too many board level SI simulators support it yet
few *-AMS models exist —

- h—
3 CHIFsE :u~=ﬁ
|

Cadence’s SPICE macro model
proposal

Write the tricks that HSPICE and K-SPICE
can do in Berkeley SPICE

reason: Berkeley SPICE is one of the approved
language extensions of IBIS 4.1

problem: Berkeley SPICE is very limited with its

E, F, G, H elements to be useful for anything
Proposal: add the missing features of
Berkeley SPICE to the IBIS specification

Berkeley SPICE stopped being developed in 1993
This would allow model makers to write
macro models for advanced buffer types
that cannot be modeled by IBIS keywords

SPICE macro model pros and cons

This would be like standardizing SPICE

wouldn’t be a bad idea after 20+ years...

who’s syntax should it be?

would Synopsys allow IBIS to publish the HSPICE syntax?

Cadence may be willing to “donate” K-SPICE

K-SPICE has no transistor model capabilities

are all tool vendors going to want to implement K-SPICE?
SPICE macro modeling provides useful solutions for the
short term, but
The proposal requires BIRDs for the IBIS spec

usually slow process

the faster we want to do it the fewer the features will be,
and the more often BIRDs will need to be written

Delays the already slow acceptance of *-AMS

—_—
h
Yy 4

g |

Vendor neutral SPICE syntax?

An idea surfaced during discussions to invent
a vendor neutral SPICE syntax
to avoid favoritism with any vendor

to make the amount implementation effort about
the same for each vendor

to avoid any copyright issues
This will not solve any technical
implementation issues
the “neutral” SPICE syntax may have certain
features which exist in one tool, but not another, or
some features may resemble one tool’s syntax more
than another tool’s syntax
It would take a considerable amount of time
to write such a SPICE syntax from scratch
remember the IBIS-X efforts?

A new idea

Why not use the analog subset of the *-AMS languages
for macro modeling?

The macro model will have to be netlisted in Verilog-AMS
or VHDL-AMS

these netlists are very much SPICE-like
Hide the equations in a library of building blocks

develop a set of SPICE compatible *-A(MS) building blocks
(E, F, G, H elements)

the user of these building blocks doesn’t have to know
about the underlying equations or *-AMS syntax

SPICE tools could substitute their equivalent elements
No changes are required in the IBIS spec

[External Circuit]s can be used to instantiate these macro
models from IBIS

this can be done as we speak
helps the adoption of *-AMS in general

7

T e
. .
i =
|

VHDL-A(MS) or Verilog-A(MS)?

Several SPICE tools are starting to implement
Verilog-A

HSPICE 2005.03, and others...
Some tools have full *-AMS support
Verilog-A is IBIS compatible, since it is a
subset of Verilog-AMS

tools usually implement more than just pure Verilog-A

“AMS” models do not have to include mixed signal or
digital constructs

Verilog-A(MS) is more similar to SPICE
but the specification is quite loose

VHDL-A(MS) is a more robust specification
a little less human readable, less SPICE-like

New proposal — part 1

Develop a standard library in Verilog-A(MS)

a complete set of "modules” (building blocks) to be
used for macro modeling

a little more widely supported than VHDL-A(MS)

If needed, a corresponding and compatible
library in VHDL-A(MS) could also be developed

there is no technical reason that this couldn’t be done

Participation in library development welcome
tool vendors preferred with strong commitment
the effort must be coordinated to achieve consistent
and coherent content
A prototype library could be targeted for the
next IBIS summit at DesignCon East,
September 2005

———

B s
o —
|

New proposal - part 2

Develop a set of macro models (templates) for

commonly used and well known buffer types
impedance compensated buffers, true differential,
pre/de-emphasis buffers, buffers with deterministic
jitter insertion, DFE, FIR equalized receiver models,
etc...

This macro model library would not have to be

standardized

contains only a netlist of building block instances

This macro model library may be extended by
anyone at any time

1 0 o r@

Macromodel Hierarchy

IBIS File

...

[External Circuit] or
[External Model] call
macro model templates

Macro model templates
call building blocks from
standard library

..

Building blocks are written
using the analog only features
of the *-AMS languages, and
can be substituted with native
SPICE elements in SPICE tools

if necessary 11

A macro model example

A differential pre/de-emphasis buffer
a circuit netlist serves as the macro model, instantiating
four Verilog-A or VHDL-AMS IBIS I/0 buffer models,
an inverter,
two ideal delays, and
eight current sources to scale the Boost buffer’s current

Wired-OR

Input Main (+ & -) configuration
stimulus i .
pattern | I
: Main P 1 TX+ Pad
1 1

L __@+>| TX-Pad

4 or 8 current
sources
to scale
Boost buffer

Emphasis |
stimulus
pattern BOOSt (+ & -) Diagram borrowed from M. Mirmak

1 2 CH“'SET@

The HSPICE macro model

.SUBCKT PreDe_IO In D En D IO_P ION PC_ref PU.ref PD_ref GC_ref

+ TDelay = 10.0e-9;

+ ScaleBoost = -0.5;

*

XPosM In_D IO_P PU_ref PC_ref PD_ref GC_ref En_D TIO_buf
XNegM In_NM IO_N PU_ref PC_ref PD_ref GC_ref En_D IO_buf

XPosB In_PB IO_P PU_refPB PC_refPB PD_refPB GC_refPB En D IO _buf
XNegB In_NB IO_N PU_refNB PC_refNB PD_refNB GC_refNB En_ D IO_buf
%

Einvl In_NM PD_ref VCVS PU_ref In D i

Edlyl In_NB PD_ref VCVS DELAY In D PD_ref TD=TDelay
Edly2 In_PB PD_ref VCVS DELAY In NM PD_ref TD=TDelay
*

VpcP PC_ref PC_refPB DC=0
VpuP PU_ref PU_refPB DC=0
VpdP PD_ref PD_refPB DC=0
VgcP GC_ref GC_refPB DC=0
*

VpcN PC_ref PC_refNB
VpuN PU_ref PU_refNB
VpdN PD_ref PD_refNB
VgcN GC_ref GC_refNB
*

FpcP PC_ref IO_P CCCS VpcP ScaleBoost
FpuP PU_ref IO_P CCCS VpuP ScaleBoost
FpdP PD_ref IO_P CCCS VpdP ScaleBoost
FgcP GC_ref IO_P CCCS VgcP ScaleBoost
*

FpcN PC_ref IO_N CCCS VpcN ScaleBoost
FpuN PU_ref IO_N CCCS VpuN ScaleBoost
FpdN PD_ref IO_N CCCS VpdN ScaleBoost
FgcN GC_ref IO_N CCCS VgcN ScaleBoost
*

.ENDS

13

The Verilog-A macro model

“include "constants.vams"

“include "disciplines.vams"

“include "Library.va"

module PreDe IO (In_D, En_D, IO P, IO N, PC_ref, PU ref, PD_ref, GC_ref);

input In_D, En_D;

electrical In D, En_D;

inout I0_P, IO_N, PC_ref, PU_ref, PD_ref, GC_ref, PC_refPB, PU_refPB, PD_refPB, GC_refPB..;
electrical IO_P, IO_N, PC_ref, PU_ref, PD_ref, GC_ref, PC_refPB, PU_refPB, PD_refPB, GC_refPB..;
parameter real TDelay = 10.0e-9;

parameter real ScaleBoost = -0.5;

IO _buffer PosM (In_D, En_D, Rcv_PM, IO_P, PC_ref, PU_ref, PD_ref, GC_ref);

TI0_buffer NegM (In_NM, En_D, Rcv_NM, IO_N, PC_ref, PU_ref, PD_ref, GC_ref) ;

IO_buffer PosB (In_PB, En_D, Rcv_PB, IO_P, PC_refPB, PU_refPB, PD_refPB, GC_refPB);
IO_buffer NegB (In_NB, En_D, Rcv_NB, IO_N, PC_refNB, PU_refNB, PD_refNB, GC_refNB);

Inverter Invl (In_D, In_NM, PU_ref, PD_ref);
Delay #(.DelayTime (TDelay)) Dlyl (In_D, In_NB, PD_ref);
Delay #(.DelayTime (TDelay)) Dly2 (In_NM, In_PB, PD_ref);
Isource #(.M(ScaleBoost)) IpcP (PC_ref, IO_P, PC_ref, PC_refPB);
Isource #(.M(ScaleBoost)) TpuP (PU_ref, IO_P, PU_ref, PU_refPB);
Isource #(.M(ScaleBoost)) IpdP (PD_ref, IO_P, PD_ref, PD_refPB);
Isource #(.M(ScaleBoost)) IgcP (GC_ref, IO_P, GC_ref, GC_refPB);
Isource #(.M(ScaleBoost)) IpcN (PC_ref, IO_N, PC_ref, PC_refNB);
Isource #(.M(ScaleBoost)) IpuN (PU_ref, IO_N, PU_ref, PU_refNB);
Isource #(.M(ScaleBoost)) IpdN (PD_ref, IO_N, PD_ref, PD_refNB);
Isource #(.M(ScaleBoost)) IgcN (GC_ref, IO_N, GC_ref, GC_refNB);
endmodule

]
I nu ® 14 CHIPSET GROUP,

The Verilog-A library (1)

J

module Inverter (In, Out, Pref, Gref);
input In, Pref, Gref;
electrical In, Pref, Gref;
output Out;
electrical Out;

analog begin
V(Out, Gref) <+ V(Pref, In);
end
endmodule

D

module Delay (In, Out, Gref);
input In, Gref;
electrical In, Gref;
output out;

electrical Out;
parameter real DelayTime = 0.0 from [0:inf);

analog begin
V(Out, Gref) <+ absdelay(V(In, Gref), DelayTime);
end
endmodule

N R R R R T T S S SR AL e s AL s

15

The Verilog-A library (2)

)RR KRR R KKK KK KK KKK KKK KRR KK KK KKK KKK KK KRR KRR KK KKK KKK KK KKK KRR KRR KRR KK KRR KKK Kk K

module Isource (OutP, OutN, SenseP, SenseN);
input SenseP, SenseN;
electrical SenseP, SenseN;
output OutP, OutN;
electrical OutP, OutN;

parameter real M = 1.0;
analog begin

V(SenseP, SenseN) <+ 0.0;

I(OutP, OutN) <+ M * I(SenseP, SenseN);

end
endmodule

N R R R R T T A R A s AR R LR L E s E T s

module IO_buffer (In_D, En_D, Rcv_D, IO, PC_ref, PU_ref, PD_ref, GC_ref);

endmodule

J

16

CHIPSET GROUP,

The VHDL-AMS macro model (1)

genhdl\predeemphasis/predeemphasis.vhd
Generated by SystemVision netlister 1.0 build 2005.25.1_SV
-- File created Mon Jun 06 11:26:08 2005

LIBRARY ieee;

USE ieee.std logic_1164.all;
USE ieee.electrical_systems.all;
LIBRARY edulib;

USE work.all;

entity PREDEEMPHASIS is
end entity PREDEEMPHASIS;

architecture arch PREDEEMPHASTS of PREDEEMPHASIS is
signal RCV_D_PM: STD_LOGIC;
signal IN_BN: STD_LOGIC;
terminal GCREF_PB: ELECTRICAL;
terminal VCC: ELECTRICAL;
terminal PUREF_NB: ELECTRICAL;
signal RCV_D_NM: STD_LOGIC;
signal IN BP: STD_LOGIC;
terminal GCREF_NB: ELECTRICAL;
terminal PDREF_PB: ELECTRICAL;
terminal PCREF_PB: ELECTRICAL;
signal RCV_D_PB: STD_LOGIC;
terminal PDREF_NB: ELECTRICAL;
terminal PCREF_NB: ELECTRICAL;
signal IN_MN: STD_LOGIC;
signal RCV_D_NB: STD_LOGIC;
signal IN_MP: STD_LOGIC;
terminal OUT_N: ELECTRICAL;
terminal OUT_P: ELECTRICAL;
terminal PUREF_PB: ELECTRICAL;
signal EN D: STD_LOGIC;

begin

17

The VHDL-AMS macro model (2)

MAIN P : entity WORK.IBIS_IO(IO_2EQ)
generic map (C_COMP => 1.2E-12)
port map (IN_D => IN_MP,

EN_D => EN_D,

RCV_D => RCV_D_PM,

I0 => OUT_P,

PC_REF => VCC,

PU_REF => VCC,

PD_REF => ELECTRICAL_ REF,
GC_REF => ELECTRICAL REF);

MAIN_N : entity WORK.IBIS_IO(IO_2EQ)
generic map (C_COMP => 1.2E-12)
port map (IN_D => IN_MN,

EN_D => EN_D,

RCV_D => RCV_D_NM,

10 => OUT_N,

PC_REF => VCC,

PU_REF => VCC,

PD_REF => ELECTRICAL REF,
GC_REF => ELECTRICAL REF);

BOOST_P : entity WORK.IBIS_IO(IO_2EQ)
generic map (C_COMP => 1.2E-12)
port map (IN_D => IN_BP,

EN_D => EN_D,

RCV_D => RCV_D_PB,
10 => OUT_P,

PC_REF => PCREF_PB,
PU_REF => PUREF_PB,
PD_REF => PDREF_PB,
GC_REF => GCREF_PB);

BOOST_N : entity WORK.IBIS_IO(IO_2EQ)
generic map (C_COMP => 1.2E-12)
port map (IN_D => IN_BN,

EN_D EN_D,

RCV_D RCV_D_NB,
10 => OUT_N,

PC_REF => PCREF_NB,
PU_REF => PUREE_NB,
PD_REF => PDREF_NB,
GC_REF => GCREF_NB) ;

18 CHIPSET GROUP,

The VHDL-AMS macro model (3)

(GAIN => -0.5)
port map

(OUT_P => vcC,
OUT_N ouT_P,
IN_P vee,

IN_N => PCREF_PB

)i
IPUP : entity WORK.CCCS (IDEAL)
generic map (GAIN => -0.5)
port map (OUT_P => VCC,
OUT_N => OUT_P,
IN_P => vCC,
IN_N => PUREF_PB);
IPDP : entity WORK.CCCS (IDEAL)
generic map (GAIN => -0.5)
port map (OUT_P => ELECTRICAL REF,
OUT_N => OUT_P,
IN_P => ELECTRICAL_REF,
IN_N => PDREF_PB);
IGCP :

entity WORK.CCCS (IDEAL)

generic map (GAIN => -0.5

port map (OUT_P => ELECTRICAL_REF,
] ouT_P,

ELECTRICAL_REF,

GCREF_PB) ;

19

IPCN :

The VHDL-AMS macro model (4)

entity WORK.CCCS (IDEAL)
generic map (GAIN => -0.5)
port map (OUT_P => VCC,
OUT_N => OUT_N,
IN_P => VCC,

IN_N => PCREF_NB);
IPUN : entity WORK.CCCS (IDEAL)
(GAIN => -0.5)
(oUT_P => vee,

generic map

port map

OUT_N => OUT_N,
IN_P vee,

IN_N PUREF_NB) ;
IPDN :

entity WORK.CCCS (IDEAL)
generic map

port map

(GAIN => -0.5)

(OUT_P => ELECTRICAL_REF,
OUT_N => OUT_N,
IN_P

ELECTRICAL_REF,
IN_N => PDREF_NB

)i
IGCN : entity WORK.CCCS (IDEAL)
generic map (GAIN => -0.5)
port map (OUT_P => ELECTRICAL_REF,
OUT_N

> OUT_N,

IN_P => ELECTRICAL_REF,
IN_N => GCREF_NB);

20

CHIPSET GROUP,

10

The VHDL-AMS macro model (5

Rl : entity EDULIB.RESISTOR(IDEAL)
generic map (RES => 100.0)
port map (P1 => OUT_N,

P2 => OUT_P);

V1 : entity EDULIB.V_CONSTANT (IDEAL)
generic map (LEVEL => 5.0)
port map (POS => VCC,
NEG => ELECTRICAL_REF);

LEVELSET1 : entity EDULIB.LEVELSET
port map (LEVEL => EN_D);

DIG_PULSEL : entity EDULIB.DIG_PULSE (IDEAL)
generic map (INITIAL_DELAY => 0.1NS,
PERIOD => 50NS)
port map (OUT_STATE => IN_MP);

INVERTERL : entity EDULIB.INVERTER
port map (INPUT => IN_MP,
OUTPUT => IN_MN);

DELAY 1 : entity WORK.DIG_DELAY (IDEAL)
generic map (DELAY => 10.0E-9 SEC,
IC_OUT => '1')
port map (INPUT => IN_MN,
OUTPUT => IN_BP);

DELAY_2 : entity WORK.DIG_DELAY (IDEAL)
generic map (DELAY => 10.0E-9 SEC,

port map (INPUT => IN_MP,
OUTPUT => IN_BN);

end architecture arch_PREDEEMPHASIS;

21

Waveform overlay

5.0
4.0 fM P s— P et .
\ —HSPICE_tr_pls
—HSPICE_tr_p
3.0 —HSPICE_tr_n
— HSPICE_IBIS_p
— HSPICE_IBIS_n
— Verilog_A p
— Verilog_A_n
2.0 — VHDL_AMS_p
~ VHDL_AMS_n
¥ J
" w U
0.0 T T ; : !
0.0E+00 1.0E-08 2.0E-08 3.0E-08 4.0E-08 5.0E-08
22 CHIPSET GROUP}

11

Summary

Macro modeling with *-AMS is possible now
without any changes to the IBIS specification

a standard, analog only *-AMS library could be
developed so that SPICE tools can substitute with
their own elements if they don’t support the *-AMS
language directly

Verilog-A(MS) netlists are very SPICE-like
very easy to write macro model netlists by hand
VHDL-A(MS) netlists are also similar to SPICE
somewhat more cumbersome to write by hand
A standard building block library will reduce

the model developer’s learning curve and
speed adoption of *-AMS

Simulation results match well
23 CHIPSE

———

B s
o —
|

Call to action

Soliciting for participation
need tool vendor’s participation to specify and define
the building blocks for the standard library
participation from SPICE tool vendors is needed to
make sure that these building blocks can be mapped
to their elements
Need to find a mechanism for the distribution
and revision control of the standard library
the standard library needs strict control over its
content to ensure that it can be supported widely
Need to find a distribution channel for the
macro model templates
could be done through the IBIS web site
no need for an official standards body, like ANSI, etc...

24 o r@

12

