KA R A AR A A AR A A A A A A A A A A A A A A A AR AR A AR A A A A A A A AR A AR A A AR AR A AR AR A A AR A AR A AR A AR A AR A ARk kK
KA A A AR AR AR A A A A A A A A A A A A A A A A A A AR AR A A A A A A A AR A AR A AR A AR A AR AR A A AR A AR A AR A AR A AR AR kK kK

BIRD ID#:
ISSUE TITLE: IBIS-AMI Flow Correction
REQUESTER: Arpad Muranyi, Mentor Graphics, Inc.

DATE SUBMITTED:
DATE REVISED:
DATE ACCEPTED BY IBIS OPEN FORUM:

KA KR A AR A A AR A A A A A A A A A A A A A A A A A AR A A A A A A A A A A AR A AR A AR A A A A A A AR A A AR A AR A AR A AR A AR A ARk kK
KA R A AR A AR AR A A A A A A A A A A A A A AR AR A A A A A A A A A A AR A A A A AR A A A A AR A AR A AR A AR A AR A AR A AR A ARk kK

STATEMENT OF THE ISSUE:

In Section 10, "NOTES ON ALGORITHMIC MODELING INTERFACE AND PROGRAMMING

GUIDE", sub-section 2 describes a flawed reference flow. The intent was
to make non-LTI simulations possible using the GetWave functions of AMI

models, however the order of Step 4 and Step 5, as described in the IBIS
v5.0 specification will only work properly with LTI GetWave functions.

KA R A AR AR AR AR A A A A A A A A A A A A A A A A AR A A A A A A A A A A A A AR A AR A A A A A A AR A A AR A AR A AR A AR A AR AR kK kK

Replace this text:

2 APPLICATION SCENARIOS

2.1 Linear, Time-invariant Equalization Model

1. From the system netlist, the EDA platform determines that a given
[Model] is described by an IBIS file.

2. From the IBIS file, the EDA platform determines that the [Model] is
described at least in part by an algorithmic model, and that the
AMI_TInit function of that model returns an impulse response for that
[Model].

3. The EDA platform loads the shared library containing the algorithmic
model, and obtains the addresses of the AMI_Init, AMI_GetWave, and
AMI_Close functions.

4. The EDA platform assembles the arguments for AMI_Init. These arguments
include the impulse response of the channel driving the [Model], a
handle for the dynamic memory used by the [Model], the parameters for
configuring the [Model], and optionally the impulse responses of any
crosstalk interferers.

5. The EDA platform calls AMI_Init with the arguments previously prepared.

6. AMI_Init parses the configuration parameters, allocates dynamic
memory, places the address of the start of the dynamic memory in
the memory handle, computes the impulse response of the block and
passes the modified impulse response to the EDA tool. The new
impulse response is expected to represent the filtered response.

7. The EDA platform completes the rest of the simulation/analysis using
the impulse response from AMI_Init as a complete representation of the
behavior of the given [Modell].

8. Before exiting, the EDA platform calls AMI_Close, giving it the address

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ in the memory handle for the [Model].
\

\

9. AMI_Close de-allocates the dynamic memory for the block and performs
Flow_BIRD_l.txt page 1

10.

2.2

whatever other clean-up actions are required.

The EDA platform terminates execution.

Nonlinear, and / or Time-variant Equalization Model

10.

11.

12.

13.

2.3

From the system netlist, the EDA platform determines that a given block
is described by an IBIS file.

From the IBIS file, the EDA platform determines that the block is
described at least in part by an algorithmic model.

The EDA platform loads the shared library or shared object file
containing the algorithmic model, and obtains the addresses of the
AMI_ TInit, AMI_GetWave, and AMI_Close functions.

The EDA platform assembles the arguments for AMI_Init. These arguments
include the impulse response of the channel driving the block, a handle
for the dynamic memory used by the block, the parameters for
configuring the block, and optionally the impulse responses of any
crosstalk interferers.

The EDA platform calls AMI_Init with the arguments previously prepared.

AMI_TInit parses the configuration parameters, allocates dynamic
memory and places the address of the start of the dynamic memory in
the memory handle. AMI_Init may also compute the impulse response
of the block and pass the modified impulse response to the EDA tool.
The new impulse response is expected to represent the filtered
response.

A long time simulation may be broken up into multiple time segments.
For each time segment, the EDA platform computes the input waveform to
the [Model] for that time segment. For example, if a million bits are
to be run, there can be 1000 segments of 1000 bits each, i.e. one time
segment comprises 1000 bits.

For each time segment, the EDA platform calls the AMI_GetWave function,
giving it the input waveform and the address in the dynamic memory
handle for the block.

The AMI_GetWave function computes the output waveform for the block. 1In
the case of a transmitter, this is the Input voltage to the receiver.
In the case of the receiver, this is the voltage waveform at the

decision point of the receiver.

The EDA platform uses the output of the receiver AMI_GetWave function
to complete the simulation/analysis.

Before exiting, the EDA platform calls AMI_Close, giving it the address
in the memory handle for the block.

AMI_Close de—allocates the dynamic memory for the block and performs
whatever other clean-up actions are required.

The EDA platform terminates execution.

Reference system analysis flow

System simulations will commonly involve both TX and RX algorithmic
models, each of which may perform filtering in the AMI_Init call, the
AMI_Getwave call, or both. Since both LTI and non-LTI behavior can be
modeled with algorithmic models, the manner in which models are

Flow_BIRD_l.txt page 2

evaluated can affect simulation results. The following steps are
defined as the reference simulation flow. Other methods of calling
models and processing results may be employed, but the final simulation
waveforms are expected to match the waveforms produced by the reference
simulation flow.

The steps in this flow are chained, with the input to each step being
the output of the step that preceded it.

Step 1. The simulation platform obtains the impulse response for the
analog channel. This represents the combined impulse response
of the transmitter's analog output, the channel and the
receiver's analog front end. This impulse response represents
the transmitter's output characteristics without filtering, for
example, equalization.

Step 2. The output of Step 1 is presented to the TX model's AMI_Init
call. 1If Use_Init_Output for the TX model is set to True, the
impulse response returned by the TX AMI_Init call is passed
onto Step 3. If Use_Init_Output for the TX model is set to
False, the same impulse response passed into Step 2 is passed
on to step 3.

Step 3. The output of Step 2 is presented to the RX model's AMI_Init
call. 1If Use_Init_Output for the RX model is set to True, the
impulse response returned by the RX AMI_Init call is passed
onto Step 4. If Use_Init_Output for the RX model is set to
False, the same impulse response passed into Step 3 is passed
on to step 4.

Step 4. The simulation platform takes the output of step 3 and combines
(for example by convolution) the input bitstream and a unit
pulse to produce an analog waveform.

Step 5. The output of step 4 is presented to the TX model's AMI_Getwave
call. If the TX model does not include an AMI_Getwave call,
this step is a pass—-through step, and the input to step 5 is
passed directly to step 6.

Step 6. The output of step 5 is presented to the RX model's AMI_Getwave
call. If the RX model does not include an AMI_Getwave call,
this step is a pass—-through step, and the input to step 6 is
passed directly to step 7.

Step 7. The output of step 6 becomes the simulation waveform output at
the RX decision point, which may be post-processed by the
simulation tool.

Steps 4 though 7 can be called once or can be called multiple times to
process the full analog waveform. Splitting up the full analog waveform
into mulitple calls minimized the memory requirement when doing long
simulations, and allows AMI_Getwave to return model status every so many
bits. Once all blocks of the input waveform have been processed, TX
AMI_Close and RX AMI_close are called to perform any final processing
and release allocated memory.

with the following text:

(Due to the high percentage of modified or new text, the changes are not
marked by the usual "*" characters at the beginning of each line).

| 2 APPLICATION SCENARIOS
Flow_BIRD_l.txt page 3

2.1 Linear, Time-invariant Equalization Model

2.

10.

2

From the system netlist, the EDA platform determines that a given
[Model] is described by an IBIS file.

From the IBIS file, the EDA platform determines that the [Model] is
described at least in part by an algorithmic model.

The EDA platform loads the shared library or shared object file
containing the algorithmic model, and obtains the addresses of the
AMI_ TInit, AMI_GetWave, and AMI_Close functions.

The EDA platform assembles the arguments for AMI_Init. These
arguments include the impulse response of the channel driving the
block, a handle for the dynamic memory used by the block, the
parameters for configuring the block, and optionally the impulse
responses of any crosstalk interferers.

The EDA platform calls AMI_Init with the arguments previously
prepared.

AMI_TInit parses the configuration parameters, allocates dynamic
memory, places the address of the start of the dynamic memory in the
memory handle. Depending on the value of Init_Returns_Filter, it
either computes and returns the filter response of the block, or
computes the impulse response of the channel modified by the filter
response of the block.

The EDA platform completes the rest of the simulation/analysis using
the impulse response from AMI_Init as a complete representation of
the behavior of the given block combined with the channel, or makes
use of the filter response returned by AMI_Init to compute the
behavior of the given block combined with the channel.

Before exiting, the EDA platform calls AMI_Close, giving it the
address in the memory handle for the block.

AMI_Close de—allocates the dynamic memory for the block and performs
whatever other clean-up actions are required.

The EDA platform terminates execution.

Nonlinear, and / or Time-variant Equalization Model

From the system netlist, the EDA platform determines that a given
block is described by an IBIS file.

From the IBIS file, the EDA platform determines that the block is
described at least in part by an algorithmic model.

The EDA platform loads the shared library or shared object file
containing the algorithmic model, and obtains the addresses of the
AMI_TInit, AMI_GetWave, and AMI_Close functions.

The EDA platform assembles the arguments for AMI_Init. These
arguments include the impulse response of the channel driving the
block, a handle for the dynamic memory used by the block, the
parameters for configuring the block, and optionally the impulse
responses of any crosstalk interferers.

The EDA platform calls AMI_Init with the arguments previously
Flow_BIRD_l.txt page 4

prepared.

6. AMI_Init parses the configuration parameters, allocates dynamic
memory and places the address of the start of the dynamic memory in
the memory handle. Depending on the value of Init_Returns_Filter,
it either computes and returns the filter response of the block, or
computes the impulse response of the channel modified by the filter
response of the block. The EDA platform may make use of the
impulse response or the filter response returned by AMI_Init in its
further analysis if needed.

7. The EDA platform generates a time domain input waveform (stimulus)
bit pattern. A long simulation may be broken up into multiple time
segments by the EDA platform. For example, if a million bits are
to be simulated, there can be 1000 segments of 1000 bits each, i.e.
one time segment comprises 1000 bits.

8. For each time segment, the EDA platform calls the transmitter
AMI_GetWave function, giving it the input waveform and the address
in the dynamic memory handle for the block.

9. Depending on the value stored in the Use_Init_Output parameters,
the EDA platform combines the output of the transmitter AMI_GetWave
function with the output(s) of the AMI_Init function(s) with the
impulse response of the channel and passes this result to the
receiver AMI_GetWave function for each time segment of the
simulation.

10. The output waveform of the receiver GetWave function represents the
voltage waveform at the decision point of the receiver. The EDA

platform uses this waveform to complete the simulation/analysis.

11. Before exiting, the EDA platform calls AMI_Close, giving it the
address in the memory handle for the block.

12. AMI_Close de-allocates the dynamic memory for the block and performs
whatever other clean-up actions are required.

13. The EDA platform terminates execution.

2.3 Reference system analysis flow

System simulations will commonly involve both TX and RX algorithmic
models, each of which may perform filtering in the AMI_Init call, the
AMI_Getwave call, or both. Since both LTI and non-LTI behavior can be
modeled with algorithmic models, the manner in which models are evaluated
can affect simulation results. The following steps are defined as the
reference simulation flow. Other methods of calling models and
processing results may be employed, but the final simulation waveforms
are expected to match the waveforms produced by the reference simulation
flow.

Step 1. The simulation platform obtains the impulse response for the
analog channel. This represents the combined impulse response
of the transmitter's analog output, the channel and the
receiver's analog front end. This impulse response represents
the transmitter's output characteristics without filtering, for
example, equalization.

Step 2. The output of Step 1 is presented to the TX model's AMI_Init
call. If Init_Returns_Filter for the TX model is set to True,
the model returns the impulse response of the TX filter. If it
is set to False, the TX AMI_Init call returns the modified
impulse response of the channel. The output of TX AMI_Init is

Flow_BIRD_l.txt page 5

returned to the EDA tool which decides how to make use of it
depending on the transmitter’s Init_Returns_Filter and
Use_Init_Output parameters.

If the transmitter’s Init_Returns_Filter parameter is set to
False, the output of Step 2 is presented to the RX model's

AMI TInit call. If the Init_Returns_Filter is set to True, the
EDA tool will combine the output of Step 2 with the output of
Step 1 (for example by convolution) before presenting it to the
RX model’s AMI_Init call.

The output of Step 3 is presented to the RX model's AMI_Init
call. If Init_Returns_Filter for the RX model is set to True,
the model returns the impulse response of the RX filter. If it
is set to False, the RX AMI_Init call returns the filtered
response of the channel. The output of RX AMI_Init is returned
to the EDA tool which decides how to make use of it depending
on the receiver’s Init_Returns_Filter and Use_Init_Output
parameters.

If the receiver’s Init_Returns_Filter parameter is set to
False, the output of Step 4 may be presented to the user of the
EDA tool, or the EDA tool can further process the results using
statistical algorithms. If the Init_Returns_Filter is set to
True, the EDA tool will combine the output of Step 4 with the
output of Step 3 (for example by convolution) before presenting
it to the user of the EDA tool, or before continuing with the
statistical processing of these results.

The simulation platform produces a digital stimulus waveform. A
digital stimulus waveform is 0.5 when the stimulus is “high”,
-0.5 when the stimulus is “low”, and may have a value between
-0.5 and 0.5 such that transitions occur when the stimulus
crosses 0.

The output of step 6 is presented to the TX model's AMI_Getwave
call. If the TX model does not include an AMI_Getwave call,
this step is a pass—-through step, and the input to step 7 is
passed directly to step 8.

The EDA simulation platform combines (for example by
convolution) the output of step 7 with the output of several
different previous steps depending on the value of the
transmitter’s and receiver’s Init_Returns_Filter and
Use_TInit_Output settings as follows:

If TX Use_Init_Output
and Step 1.

False, combine the outputs of Step 7

If TX Use_Init_Output = True and TX Retuns_Filter = False,
combine the outputs of Step 7 and Step 2.

If TX Use_Init_Output = True and TX Retuns_Filter = True,
combine the outputs of Step 7, Step 1 and Step 2.

In addition, the EDA simulation platform will also combine the
output of Step 4 with the above if RX Use_Init_Output = True.
When RX Init_Returns_Filter = True, this is a relatively straight
forward operation, but when RX Init_Returns_Filter = False, the
EDA simulation platform will have to take additional steps to
prevent the duplication of the content that is present in the
output of Steps 2 and/or 3 (for example by deconvolution). This
is why RX Init_Returns_Filter = True is preferred when RX
Use_Init_Output = True.

The output of step 8 is presented to the RX model's AMI_Getwave
call. If the RX model does not include an AMI_Getwave call,

Flow_BIRD_l.txt page 6

this step is a pass—-through step, and the input to step 9 is
passed directly to step 10.

Step 10. The output of step 9 becomes the simulation waveform output at
the RX decision point, which may be post-processed by the
simulation tool or presented to the user as is.

Steps 6 though 9 can be called once or can be called multiple times to
process the full analog waveform. Splitting up the full analog waveform
into multiple calls reduces the memory requirements when doing long
simulations, and allows AMI_Getwave to return model status every so many
bits. Once all blocks of the input waveform have been processed, TX
AMI_Close and RX AMI_close are called to perform any final processing and
release allocated memory.

KA KR A AR A A AR AR A A A A A A A A A A A A A AR AR A A A A A A A A A A AR A AR A AR A AR A AR AR A A AR A AR A AR A AR A Ak A ARk kK

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION

The IBIS-ATM Task Group spent several meetings to discuss the AMI flow
problem and the best solution for it in the months of September, October
and November of 2009. The IBIS-ATM Task Group arrived to the final version
of the proposed flow on November 17, 2009.

A graphical representation of the flow that is in described in the IBIS
v5.0 specification can be found on the first page of the following
presentation:

http://www.vhdl.org/pub/ibis/macromodel_wip/archive/20090921/arpadmuranyi/AMI%$20flows:%201I
BIS%$205.0%20and%202009%20Sept%208, 15%20proposals/AMI_Flows.pdf

The yellow highligted symbols on the second page indicate what the order
should have been to achieve the goal of simulating non-LTI sysmtems with
the GetWave functions.

The ATM Task Group also discovered during the discussions that certain
conditions would require a deconvolution operation which is known to be
a challange due to its numerical instability. To remedy this oversight,
a new Boolean parameter "Init_Returns_Filter" was also introduced in the
proposed flow to provide a mechanizm to eliminate the need for using
deconvolution in the flow.

The graphical representation of the new proposed flow can be found in
the following presentation:

http://www.vhdl.org/pub/ibis/macromodel_wip/archive/20091118/arpadmuranyi/Final%20AMI%$20f1
ow%20for%20IBIS%205.1/AMI_Flows_5_final.pdf

KA R A AR AR AR A A A A A A A A A A A A A A A A A AR A A A A A A A A A A AR A AR A AR A AR A A A A AR A AR A AR A AR A AR A AR A ARk kK

ANY OTHER BACKGROUND INFORMATION:

KA R AR R AR AR A A A A A A A A A A A A A A A AR AR A A A A A A A A A A AR A AR A AR A AR AR A A AR A AR A AR A AR A AR A AR A A kKKK

Flow_BIRD_l.txt page 7

