**

**

BIRD ID#: 147

ISSUE TITLE: Back-channel support

REQUESTOR: Marcus Van Ierssel, Snowbush IP; Kumar Keshavan, Sigrity, Inc.; Ken Willis, Sigrity, Inc.; Walter Katz, SiSoft

DATE SUBMITTED: October 18, 2011

DATE REVISED:

DATE ACCEPTED BY IBIS OPEN FORUM:

**

**

STATEMENT OF THE ISSUE:

This BIRD defines how back-channel communications are to be handled in the

IBIS specification. It requires BIRD120 (flow BIRD) and BIRD128 (AMI_GetWave

passing AMI_parameters_out/in) as prerequisites. This BIRD also entails:

- new Reserved_Parameters

- definition of a "back-channel" BCI file, with Protocol_Specific parameters

- flow updates to enable the back-channel training to occur

**

STATEMENT OF THE RESOLVED SPECIFICATIONS:

Replace the following text in Section 6c:

| Reserved Parameters:

|

| Init_Returns_Impulse, Use_Init_Output, GetWave_Exists,

| Max_Init_Aggressors and Ignore_Bits

With the following text:

| Reserved Parameters:

|

| Init_Returns_Impulse, Use_Init_Output, GetWave_Exists,

| Max_Init_Aggressors, Ignore_Bits, Training, and Backchannel_Protocol

Add the following text after the description for "Ignore_Bits":

 Training:

 Training is of usage In and type String. It tells the

 EDA platform whether training for back-channel communication

 is enabled or not for the associated model. For the back-

 channel training to be enabled in the EDA tool, the

 Training parameter must be set to "On" for both the

 transmitter and receiver of a given through channel. The

 syntax for this parameter is as follows:

 (Training (Usage In) (Type String) (List "Off" "On")

 (Default "Off") (Description "Turns training on or off"))

 Backchannel_Protocol:

Backchannel_Protocol is of usage In and type String. It tells the EDA platform what back-channel protocol is to be used for the back-channel training process. This is defined in a standard-specific back-channel BCI file. Both the transmitter and receiver for a given through channel must have identical settings for the Backchannel_Protocol parameter for back-channel training to be enabled. If the settings are different, or if the parameter has "None" specified for either the Tx, or Rx or both, the EDA tool will assume that Back Channel Communication is "Off" and will proceed to run simulation without Back Channel. When calling the Tx and Rx AMI_Init function, the EDA tool shall pass the value: <full_path_to>/<protocol>.bci. The EDA tool is responsible for determining <full_path_to>. This file may be located in the same directory as the .ibs, .ami, dll files or may be located in library folders controlled by the EDA tool. An example of the syntax for this parameter is as follows:

(Backchannel_Protocol (Usage In) (Type String) (List "None" "standard1" "standard2" "standard3" "standard4") (Default "standard1") (Description "This Device can support back-channel training for multiple standards."))

There are a number of Reserved_Parameters that are used solely for the

purpose of enabling back-channel communication, in which a receiver

provides information back to its associated transmitter in order to assist

in optimizing that transmitter's equalization parameters, in the context of

a particular industry standard. These additional back-channel Reserved

Parameters are listed below, and are used only in a back-channel BCI file,

using a .bci file extension:

Reserved Parameters for Back-Channel Communication

Training_Pattern, Preamble, Data, Length, Postamble, Max_Train_Bits, TrainingDone.
Descriptions for each are listed below.

Training_Pattern:

Training_Pattern is of usage Info and is the keyword used to describe the bit pattern sent from the transmitter to the receiver during the back-channel training.

Preamble:

Preamble is of usage Info and defines the leading bit pattern that starts a

back-channel training Frame.

Data:

Data describes the bit pattern that the EDA tool should generate to serve as

the body of the Frame.

Length:

Length is of usage Info and describes the length of the PRBS pattern to be

generated by the EDA tool.

Postamble:

Postamble is of usage Info and describes the trailing bits used to indicate the

end of the training pattern. This is used by the EDA tool to determine the end

of the particular training pattern.

Max_Train_Bits:

Max_Train_Bits is of usage Info and defines the total number of training bits

that can be sent by a transmitter during the back-channel communication. This

tells the EDA tool when the back-channel training is complete, if the receiver

does not indicate it first with the TrainingDone parameter.

TrainingDone:

TrainingDone is of usage InOut and is issued by the receiver model to signify the completion of back-channel training. TrainingDone can also be initiated by the EDA tool. In this case the parameter TrainingDone=True can be passed from the EDA tool to the receiver model. Then the receiver model will re-issue the parameter TrainingDone=True to the transmitter model to end the training process.

On page 177, add new type after UI:
Bits
Used to describe bit patterns in Binary (b), Hex (h), Octal (o) or decimal (d) (base 10) format. Strings that begin with b,h,o and d denote Binary, Hex, Octal and decimal respectively.
Examples of Bits are b01111111100000000, h0123456789ABCDEF0123456789ABCDEF, o01234567012345670123456701234567 and d8. If only the alphabet r is supplied, the EDA tool will use a random positive integer for the bit value.
On page 188, add new format types after DjRj:
Bit_Pattern <bits> <repeat count>
Bit_Pattern defines a block of bits where “bits” are of type Bits followed by a “repeat count” which is an integer number and is the number of times the bits described in “bits” are to be inserted into the stimulus. If the value is negative, the EDA tool will repeat the bits forever.
Example: (bit_pattern1 (Usage In) (Type Bits)

 (Bit_Pattern b11110000111 2))

 (Description "Bit Pattern Sequence using format Bit_Pattern")

)
Bit_Pattern_File <File_Name> <repeat count>

Bit_Pattern_File defines a file named “File_Name” that contains a sequence of binary, octal or hex numbers of Type Bits followed by a “repeat count” which is an integer number and is the number of times the bits described in “bits” are to be inserted into the stimulus. If the value is negative, the EDA tool will repeat the bits forever.

Example: (bit_pattern2 (Usage In) (Type Bits)

 (Bit_Pattern_File abc.bpi 3))

 (Description "Bit Pattern Sequence using format Bit_Pattern")

)
PRBS <duty cycle> <seed> <repeat count>
PRBS is also a format to define a block of bits where “duty cycle” is a positive, integer number. The PRBS pattern will repeat every 2^“duty cycle” bits and “seed” is a non-negative integer number, can be represented as Type Bits or "Random" for random seed. Like in Bit_Pattern, “repeat count” is an integer number. It is the number of times this bit pattern is to be inserted into the stimulus. If the value is negative, the EDA tool will repeat the bits forever.
Example: (bit_pattern3 (Usage In) (Type Bits)

 (PRBS 11 b11110000111 1))
 (Description "Bit Pattern Sequence using PRBS")

)
LFSR <taps> <seed> <data_len>
LFSR is of usage Info and describes the value associated with a linear feedback shift register used by the EDA tool for the PRBS generation. The first argument “taps” are integer values separated by comma. “seed” is a non-negative integer number represented as Type Bits. <data len> is an integer number signifying the length of the data pattern generated by this LFSR in bits. If the value is negative, the LFSR will generate bits forever.
Example: (bit_pattern4 (Usage In) (Type Bits)

 (LFSR 1,9,11 r 4096))

 (Description "Bit Pattern Sequence using LFSR")

)
Also, a BCI file may contain additional parameters in the "Protocol_Specific" section. This section is analogous to the "Model_Specific" section of an AMI file, and must abide by the same rules and syntax. The purpose of this section is to define the protocol-specific parameters that are to be passed back and forth between the Tx and Rx AMI models during the backchannel training process. Note that the Tx and Rx AMI models utilizing a particular BCI file must support the Protocol_Specific parameters defined in that BCI file.

An example template for a back-channel BCI file is given below:

(802.3KR

 (Reserved_Parameters

 (Training_Pattern (Description "Defines the training pattern")

 (Preamble (Usage Info) (Type Bits) (Bit_Pattern b11111111111111110000000000000000 1)

 (Description "Leading preamble pattern."))

 (Data (Usage Info) (Type Bits) (LFSR 1,9,11 random 4096)

 (Description "Training pattern."))

 (Postamble (Usage Info) (Type Bits) (Bit_Pattern b00 1)

 (Description "Trailing postamble pattern."))

)

 (Max_Train_Bits (Usage In) (Type Integer) (Value 500000)

 (Description "Number of total training bits allowed"))

 (TrainingDone (Usage InOut) (Type Boolean) (List False True)

 (Description "If True then training is done"))

)

 (Protocol_Specific

 (PreTap (Usage InOut) (Type Integer) (List -1 0 1) (Default 0)

 (Description "Parameter name is standard-specific, and can be any legal Type"))

 (MainTap (Usage InOut) (Type Integer) (List -1 0 1) (Default 0)

 (Description "Parameter name is standard-specific, and can be any legal Type"))

 (PostTap (Usage InOut) (Type Integer) (List -1 0 1) (Default 0)

 (Description "Parameter name is standard-specific, and can be any legal Type"))

)

)

Replace the following text in Section 2.3 of Section 10 (NOTES ON ALGORITHMIC

MODELING INTERFACE AND PROGRAMMING GUIDE), once BIRD120 is incorporated into

the IBIS specification

| 3 Reference Flows

| =================

|

| The next two sections define a reference simulation flow for statistical

| and time domain system analysis simulations. Other methods of calling

| models and processing results may be employed, but the final simulation

| waveforms are expected to match the waveforms produced by this reference

| simulation flow.

|

| A system simulation usually involves a transmitter (Tx) and a receiver

| (Rx) model with a passive channel placed between them.

With the following text:

3 Reference Flows

=================

The next several sections define reference flows for back-channel training,

statistical analysis, and time domain system analysis simulations. Other

methods of calling models and processing results may be employed, but the

final simulation waveforms are expected to match the waveforms produced by

these reference flows.

A system simulation usually involves a transmitter (Tx) and a receiver

(Rx) model with a passive channel placed between them.

3.1 Back-Channel Training Reference Flow

==

Some industry standards for serial link interfaces utilize back-channel

communications as a means by which the Rx can communicate back to the Tx

to provide guidance as to the equalization settings of the Tx, to optimize

for the given channel. Once the back-channel training is completed and the

Tx equalization settings are optimized, then time domain simulation is

performed per the "Time domain simulation reference flow" defined later in

this specification.

Note that back-channel training does not apply to statistical simulation,

as back-channel training utilizes the AMI_GetWave function in both the

Tx and Rx, and is therefore not applicable to statistical simulation.

To enable the back-channel training to occur, the .ami files for both Tx

and Rx of a given through channel must have the GetWave_Exists parameter

set as "True", the Training parameter set to "on" and the Backchannel_Protocol

parameter specifying the same back-channel BCI file.

Step 1. The simulation platform obtains the impulse response for the

analog channel, as described in the statistical and time domain simulation

flows.

Step 2. The simulation platform produces a digital stimulus waveform

as defined per the back-channel BCI file. A digital stimulus waveform

is 0.5 when the stimulus is "high", -0.5 when the stimulus is "low",

and may have a value between -0.5 and 0.5 such that transitions occur

when the stimulus crosses 0.

Step 3. The output of Step 2 is presented to the Tx model's AMI_GetWave

function. If the Rx model's AMI_GetWave function has written out the

Protocol_Specific parameters from a previous training sequence, these

parameters are read in. Then the Tx AMI_GetWave function is executed.

The output of the Tx AMI_GetWave function is passed on to Step 4. The

Protocol_Specific parameters defined in the back-channel BCI file are

written out by the Tx model's AMI_GetWave function.

Step 4. The output of Step 3 is convolved with the output of Step 1 by the

simulation platform and the result is passed on to Step 5.

Step 5. The output of Step 4 is presented to the Rx model's AMI_GetWave

function, the Protocol_Specific parameters from the Tx are read in, and the

Rx AMI_GetWave function is executed. The Protocol_Specific parameters are

modified and output by the Rx AMI_GetWave function.

Step 6. Steps 2-5 are executed iteratively until the Rx model's AMI_GetWave

function returns the value of the TrainingDone parameter as "1", or until the

Length parameter defined in the back-channel BCI file is exceeded, whichever

occurs first.

Step 7. With the Tx equalization settings optimized through back-channel

communication, the "Time domain simulation reference flow" is executed directly.

**

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:

Back-channel communication is required for PCI Express Gen 3, 10GBASE-KR,

and other emerging serial link standards. Back-channel capability was

initially developed by Sigrity and Snowbush (IP division of Gennum). It was

deemed desirable to bring this capability to the IBIS standard in order

to encourage other SerDes IP suppliers to enable back-channel functionality

for their IP as well.

**

ANY OTHER BACKGROUND INFORMATION:

The following documents are provided as supporting material for this BIRD:

- "Extending IBIS-AMI to Support Back-Channel Communications", by

 Marcus Van Ierssel of Snowbush, Kumar Keshavan of Sigrity, Inc., and Ken

 Willis of Sigrity, Inc., delivered at the IBIS Summit on Feb. 3, 2011:

 http://www.sigrity.com/papers/2010/IBIS_AMI_Modeling_May_2010.pdf

- "BIRD Proposal: Extending IBIS-AMI to Support Back-Channel Communications",

 by Marcus Van Ierssel of Snowbush, Kumar Keshavan of Sigrity, Inc., and Ken

 Willis of Sigrity, Inc., delivered at the IBIS-ATM subcommittee meeting on

 March 15, 2011:

 http://www.vhdl.org/pub/ibis/macromodel_wip/archive/20110315/kenwillis/

 Proposed%20BackChannel%20BIRD%20Modifications/Proposal_BackChannel_BIRD_mods.pdf

- "BIRD Proposal: Extending IBIS-AMI to Support Back-Channel Communications",

 by Marcus Van Ierssel of Snowbush, Kumar Keshavan of Sigrity, Inc., Ken

 Willis of Sigrity, Inc., and Walter Katz of SiSoft, Inc, delivered at the IBIS

 Summit meeting on June 7, 2011:

 http://www.sigrity.com/papers/2011/Backchannel_June_2011.pdf

**

