Touchstone® File Format Specification

Version 2.0

Copyright © 2008 by the Government Electronics and Information Technology Association (GEIA). This document may be distributed free of charge, as long as the entire document including this copyright notice remain intact and unchanged.

Touchstone® is a registered trademark of Agilent Technologies, Inc. and is used with permission.

INTRODUCTION

A Touchstone® file (also known as an SnP file) is an ASCII text file used for documenting the n-port network parameter data of an active device or passive interconnect network. While Touchstone® files have been accepted as a de-facto standard for the transfer of frequency dependent n-port parameters, up until this document no formal specification of the file format or syntax had been produced. This document, based upon information from Agilent Technologies, Inc. (the originator of Touchstone®) is a formal specification of the Touchstone® file format, intended for use with documents and specifications produced by the IBIS Open Forum.

Version 2.0 was created based upon the original Touchstone® definition, with added features in the style of IBIS (I/O Buffer Information Specification) and the ICM (IBIS Interconnect Model) specification. Files written using the original syntax are compatible with the updated specification and are treated as Version 1.0.

Ò

N'E

GENERAL SYNTAX RULES AND GUIDELINES

The following are the general syntax rules and guidelines for a Touchstone® file.

- 1. Touchstone® files are case-insensitive.
- 2. Only ASCII characters, as defined in ANSI Standard X3.4-1986, may be used in a Touchstone® file. The use of characters with codes greater than hexadecimal 07E is not allowed. In addition, ASCII control characters (those numerically less than hexadecimal 20) are not allowed, except for tabs or a line termination sequence (carriage-return or carriage-return/line-feed combination).

Note: The use of tab characters is strongly discouraged.

- 3. Comments are preceded by an exclamation mark (!). Comments may appear on a separate line, or after the last data value on a line. Comments are terminated by a line termination sequence (i.e., multi-line comments are not allowed).
- 4. By convention, Touchstone® filenames use a file extension of '.snp', where 'n' is the number of network ports of the device or interconnect being described. For example, a Touchstone® file containing the network parameters for a 2-port device would be named 'filename'.s2p, while a Touchstone® file containing the data for a 3-port network would be 'filename'.s3p, and so on. Note that this convention may not be observed by all files.

For Version 2.0 and above, [Number of Ports] establishes the expected number of ports defined in the file.

- 5. All angles are measured in degrees.
- 6. Scientific notation IS allowed (e.g., 1.2345e-12). No minimum or maximum limits are placed on numerical precision on individual data points.
- 7. Keywords (as used in Version 2.0 files) must be enclosed in square brackets, [], and must start in column 1 of the line. No space or tab is allowed immediately after the opening bracket '[' or immediately before the closing bracket ']'. If used, only one space (' ') or underscore ('_') character separates the parts of a multi-word keyword.
- 8. Underscores and spaces are equivalent in keywords.

FILE FORMAT DESCRIPTION

Introduction

Touchstone[®] data files consist of an 'option line' followed by network parameters taken at specific frequencies. The option line specifies (among other things) the kind of n-port parameters the file contains (S-parameter, Z-parameter, etc.) and the format of the data values (magnitude-phase, real-imaginary, etc.). Data is arranged into groups of n-port parameters preceded by the frequency at which the data was taken or derived. For each frequency, data for a 1-port or 2-port network is contained on a single data line while data for 3-port and above networks is arranged in a matrix row-wise order. The Touchstone[®] format supports matrices of unlimited size.

Version 2.0 adds to the above several additional keywords: [Version], [Number of Ports], [Reference], [Number of Frequencies], [Number of Noise Frequencies] and [Matrix Format]. The [Number of Ports] keyword and data specify the number of ports represented by data in the file. The [Reference] keyword and data provide the reference impedances for each port, using the same order as the port data itself. [Matrix Format] specifies the arrangement of network data. [Number of Frequencies] and [Number of Noise Frequencies] specify the number of frequency points and noise frequency points, respectively, contained in the file.

In addition to the above option lines, keywords and data lines, files that describe 2-port devices may also contain noise parameter data. Comment lines may be interspersed in the file as necessary.

These keywords and data formats are described in detail in the following sub-sections.

Note that Touchstone® does not support direct input of mixed-mode (colloquially, 'differential') data (e.g., SDD11, SCD12, etc.). Differential systems may be represented in Touchstone® files by collecting data for pairs of terminals as 'ports' and, for S-parameters, setting reference impedances appropriately. In such cases, a Touchstone® file for a two-terminal system, for example, may be indistinguishable from a Touchstone® file for a four-terminal system with data collected in this manner.

Comment Lines

Touchstone® data files may include comments. Comments are preceded by an exclamation mark (!). Comments may appear on a separate line, or after the last data value on a line. Comments are terminated by a line termination sequence (i.e., multi-line comments are not allowed).

[Version]

Rules for Version 1.0 files: The [Version] line is not permitted for Version 1.0 files.

Rules for Version 2.0 files: [Version] is required for files using any Version 2.0 syntax.

Each Touchstone[®] Version 2.0 data file must contain one and only one [Version] keyword and entry. This should precede all other non-comment lines. Both the opening and closing brackets are required. The [Version] line contains one string argument. The argument must be preceded by whitespace.

The [Version] line provides information on the Version of the specification under which the file contents should be interpreted.

The only valid argument is '2.0'.

Option Line

Each Touchstone® data file must contain an option line (additional option lines after the first one will be ignored). The option line is formatted as follows:

<frequency unit> <parameter> <format> R <n>

where #	marks the beginning of the option line.
	marks the beginning of the option fine.
frequency unit	specifies the unit of frequency. Legal values are GHz, MHz, kHz, Hz. The default value is GHz.
parameter	specifies what kind of network parameter data is contained in the file. Legal values are: S for Scattering parameters, Y for Admittance parameters, Z for Impedance parameters, H for Hybrid-h parameters, G for Hybrid-g parameters. The default value is S.
format	<pre>specifies the format of the network parameter data pairs. Legal values are: DB for dB-angle (dB = 20*log10 magnitude) MA for magnitude-angle, RI for real-imaginary. Angles are given in degrees. Note that this format does not apply to noise parameters (refer to the 'Adding Noise Parameters' section at the end of this document). The default value is MA.</pre>
R n	specifies the reference resistance in ohms, where n is a real, positive number of ohms. The default reference resistance is 50 ohms. Note that this is overridden by the [Reference] line, described below, for files of [Version] 2.0 and above.
newline character (either	re separated by one or more whitespace; the option line itself is terminated with a CR or CR/LF). If a parameter is missing, the default value is assumed. With the # (hash mark) symbol and the value following 'R', option line parameters can

In summary, the option line should read:

appear in any order.

```
For 1-port files: # [Hz|kHz|MHz|GHz] [S|Y|Z] [MA|DB|RI] [R n]
For 2-port files: # [Hz|kHz|MHz|GHz] [S|Y|Z|G|H] [MA|DB|RI] [R n]
For n-port files: # [Hz|kHz|MHz|GHz] [S|Y|Z] [MA|DB|RI] [R n]
```

where the square brackets ([]) indicate optional information; ...|...|...| means to select one of the choices; and n is replaced by a positive integer or floating-point number. Though specific cases are used for the units above and throughout this document (e.g., 'kHz'), Touchstone® files are case-insensitive.

Note that the reference impedance specified in the option line applies to all ports described in the data lines, if [Reference] is not present.

Rules for Version 1.0 Files:

For Version 1.0 files, the option line must immediately precede any data lines and must be the first noncomment line in the file. The reference resistance defines the system reference for the S-parameter data and the normalization used on G-, H-, Y- and Z-parameter data.

Rules for Version 2.0 Files:

For Version 2.0 files, the option line must follow the [Version] keyword and precede any network data.

For Version 2.0 files, the reference resistance defines the system reference for the S-parameter data if the [Reference] keyword is not present. Normalization does not apply to Version 2.0 files. Therefore, the reference resistance and [Reference] keyword have no impact on G-, H-, Y- or Z-parameter data in Version 2.0 files.

Per the defaults above, an empty option line (a single hash mark without any non-comment characters following it) in a Version 1.0 file would indicate that the file uses GHz units for frequency, S-parameters for the network data, magnitude-angle (MA) for the network data format and 50 ohms as the reference or normalization resistance. In a Version 2.0 file, no normalization would be assumed and any [Reference] entry would supersede the 50 ohm reference resistance assumption.

Option Line Examples

Note these examples assume Version 1.0 syntax.

Minimum required option line example, using all default values: #

Frequency in GHz, S-parameters in real-imaginary format, referenced to 100 ohms: # GHz S RI R 100

Frequency in kHz, Y-parameters in real-imaginary format, normalized to 100 ohms: # kHz Y RI R 100

Frequency in Hz, Z-parameters in magnitude-angle format, normalized to 10 ohms: # Hz Z MA R 10

Frequency in kHz, H-parameters in real-imaginary format normalized to 1 ohm: # kHz H RI R 1

Frequency in Hz, G-parameters in magnitude-angle, format normalized to 1 ohm: # Hz G MA R 1

[Number of Ports]

Rules for Version 1.0 Files: The [Number of Ports] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files: Each Touchstone® Version 2.0 file must contain one and only one [Number of Ports] keyword and entry. The [Number of Ports] keyword and associated data define the number of ports represented by data in the file.

The [Number of Ports] line must begin with the keyword [Number of Ports], in brackets as shown. This keyword is followed by a single positive integer argument, separated from the keyword by whitespace.

The [Number of Ports] line is required for Version 2.0 files and must appear after the [Version] keyword and before any network data.

Example 1 (Version 2.0):

[Two-Port Data Order]

Rules for Version 1.0 Files: The [Two-Port Data Order] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files:

Each Touchstone® Version 2.0 file must contain one and only one [Two-Port Data Order] keyword and entry. The [Two-Port Data Order] keyword is required only when the value for the [Number of Ports] keyword is 2. Otherwise, it is not permitted. When required, the [Two-Port Data Order] line must appear after the [Version] keyword and before any network data.

The [Two-Port Data Order] line must begin with the keyword [Two-Port Data Order], in brackets as shown. This keyword is followed by one of two string arguments separated from the keyword by whitespace: 12_21 or 21_12.

The [Two-Port Data Order] keyword is used to signify the column ordering convention. The Version 1.0 convention for two-port network data is N11, N21, N12, N22, where N11, N12, etc. represent pairs of data values. However, some tools and users have adopted the convention N11, N12, N21, N22 (a more natural order consistent with all the other n-port ordering conventions). The keyword makes the ordering of 2-port network data explicit and unambiguous in Version 2.0 files.

[Reference]

Rules for Version 1.0 Files: The [Reference] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files:

The [Reference] keyword and associated data provide a per-port definition of the reference environment used for the S-parameter measurements in the network data. It may appear only once in the file.

The [Reference] section must begin with the keyword [Reference], in brackets as shown. This keyword is followed by one or more positive integer or floating-point numbers, separated from the keyword and each other by whitespace. [Reference] data may not be mixed with data for any other keyword in the file. [Reference] data may span multiple lines.

Each of the entries is a real-valued impedance (i.e., a resistance) and is assumed to be ordered per port exactly as the data lines later in the file.

The units of the [Reference] impedances are ohms.

[Reference] may only appear after the [Version] keyword and before any network data.

Note that complex and imaginary impedance values are not supported.

[Reference] is optional. If [Reference] is not present, the reference impedances for the S-parameter data are assumed to be defined by the option line. If [Reference] is present, it must contain an impedance entry for every port represented in the data (for example, a four-port data file using [Reference] must contain four [Reference] impedance entries).

The [Reference] keyword has no impact on G-, H-, Y- or Z-parameter data.

[Number of Frequencies]

Rules for Version 1.0 Files: The [Number of Frequencies] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files:

The [Number of Frequencies] keyword entry specifies the number of frequency points, and therefore blocks of network parameters, listed in the file.

The [Number of Frequencies] section must begin with the keyword [Number of Frequencies], in brackets as shown. This keyword is followed by an integer greater than 0.

The [Number of Frequencies] is required in Version 2.0 files.

[Number of Frequencies] must appear after the [Version] keyword and before any network data.

[Number of Frequencies] has no impact on noise parameters.

Example 3 (Version 2.0):

```
!1-port Z-parameter file, multiple frequency points
[Version] 2.0
# MHz Z MA
[Number of Ports] 1
[Number of Frequencies] 5
[Reference] 20.0
!freq magZ11 angZ11
      74.25
100
              -4
               -22
200
      60
      53.025 -45
300
400
      30
               -62
```

500 0.75 -89

[Number of Noise Frequencies]

Rules for Version 1.0 Files: The [Number of Noise Frequencies] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files:

The [Number of Noise Frequencies] keyword entry specifies the number of noise frequency points, and therefore blocks of noise parameters, listed in the file.

The [Number of Noise Frequencies] section must begin with the keyword [Number of Noise Frequencies], in brackets as shown. This keyword is followed by an integer greater than 0.

The [Number of Noise Frequencies] is required in Version 2.0 files only if noise parameter data is provided.

[Number of Noise Frequencies] must appear after the [Version] keyword and before any network data.

Example 4 (Version 2.0):

```
!2-port network, S-parameter and noise data
!Default MA format, GHz frequencies, 50 ohm reference, S-parameters
[Version] 2.0
#
[Number of Ports] 2
[Two-Port Data Order] 21_12
[Number of Frequencies] 2
[Number of Noise Frequencies] 2
[Reference] 50 25.0
2 .95 -26 3.57 157 .04 76 .66 -14
22 .60 -144 1.30 40 .14 40 .56 -85
! NOISE PARAMETERS
4 .7 .64 69 19
18 2.7 .46 -33 20
```

[Matrix Format]

Rules for Version 1.0 Files: The [Matrix Format] keyword is not permitted in Version 1.0 files.

Rules for Version 2.0 Files:

The [Matrix Format] keyword entry specifies whether the entire matrix or a subset of all matrix elements is given. The latter case is applicable to symmetric matrices for which either only the lower triangular part (including the diagonal), or only the upper triangular part (including the diagonal) can be given. This assumption is most appropriate for interconnects. Note that all ports are always represented, but the format for the data takes advantage of symmetry to reduce the overall file size.

The [Matrix Format] section must begin with the keyword [Matrix Format], in brackets as shown. This keyword is followed by one of three possible strings: "Full", "Lower" or "Upper".

[Matrix Format] must appear after the [Version] keyword and before any network data.

[Matrix Format] is optional. If [Matrix Format] is not present, the network data included in the file is assumed to be of type "Full" and the network data for each port as specified under [Number of Ports] must be specified for each frequency point.

[Matrix Format] has no effect on noise data.

Example 5 (Version 2.0):

Example 6 (Version 2.0):

```
! 4-port S-parameter data
! Default impedance is overridden by the [Reference] line
! Data cannot be represented using 1.0 syntax,
[Version] 2.0
# GHz S MA R 50
[Number of Ports] 4
[Number of Frequencies] 1
[Reference] 50 75 0.01 0.01
[Matrix Format] Lower
5.00000 0.60 161.24
                                                          row 1
        0.40 -42.20 0.60 161.20
                                                          !row
                                                              2
        0.42 -66.58 0.53 -79.34 0.60 161.24
                                                          !row 3
        0.53 -79.34 0.42 -66.58 0.40 -42.20 0.60 161.24 !row 4
```

Network Parameter Data

Following the option line and/or [Reference] keyword are the network parameters (S-parameter, Z-parameter, etc.) of the type specified by the option line. Groups of n-port parameters are preceded by the frequency value for which the data was obtained, and the n-port parameters themselves are formatted as pairs of values (magnitude-angle, dB-angle or real-imaginary).

Network data is grouped into one or more 'lines' which end with a terminating newline character (e.g., CR or CR/LF). In Version 1.0 files, for each frequency, n-port parameters for 1-port and 2-port networks are contained on one data line, while data for 3-port and larger networks are arranged on multiple data lines in a matrix row-wise order.

In summary, there are five general rules for formatting network data into lines:

- 1. In Version 1.0 files, no more than four pairs of n-port parameters are allowed per data line. No restriction exists on the number of data pairs on a line in Version 2.0 files.
- 2. Individual entries in data lines are separated by whitespace.

- 3. A data line is terminated by a newline character (CR or CR/LF combination).
- 4. All data lines must be arranged in increasing order of frequency.
- 5. Frequency values may only appear at the beginning of lines, after the newline character.

Detailed descriptions for arranging the data for various n-port networks follow.

Note that H- and G- parameters are defined for 2-port networks only. These hybrid parameters cannot be used to describe networks containing any other number of ports.

Rules for Version 2.0:

In Version 2.0 files, the data associated with any one frequency may be split across any number of lines or may be placed on a single line of arbitrary length. Data in a Version 2.0 file is parsed using the [Number of Ports] entry and the [Matrix Format] entry. For a Full matrix, a new frequency point is expected every $2n^2+1$ values, where *n* is the number of ports, regardless of intervening newline characters. For a Lower or Upper matrix, a new frequency point is expected every n^2+n+1 values

1-port and 2-port Networks

Network parameter data for 1-port and 2-port networks at a single frequency can be contained on a single data line. As shown below, the data line consists of a frequency value followed by either one or four pairs of data values.

1-port data (line) <frequency value> <N11>

2-port data (line) <frequency value> <N11> <N21> <N12> <N22>

where *frequency value*

frequency at which the network parameter data was taken or derived.

N11, N21, N12, N22 network parameter data points, where N*ij* represents a pair of data values.

Note that Version 2.0 files containing 2-port network data require the [Two-Port Data Order] keyword with the argument 21_12 to designate the order above. Use of the [Two-Port Data Order] keyword with the argument 12_21 permits the alternate order, shown below, to be used.

2-port data (line) <frequency value> <N11> <N12> <N21> <N22>

where

frequency value frequency at which the network parameter data was taken or derived.

N11, *N12*, *N21*, *N22* network parameter data points, where Nij represents a pair of data values.

Network parameter data points will be in magnitude-angle, dB-angle or real-imaginary format (i.e., pairs of values) as specified by the option line. For 1-port networks, only '11' data is allowed for Full, Upper or Lower format.

For Full 2-port networks, all four port data pairs are required. If [Matrix Format] is specified as Lower or Upper, 2-port network data includes only '11', '21' and '22' data, in that order (as '21' and '12' are assumed identical, Lower and Upper 2-port network data matrices are identical).

All entries in a data line are separated by one or more whitespace characters; a data line itself is terminated by a newline character (CR or CR/LF). Multiple data lines are allowed but, as mentioned above, they must be arranged in increasing order of frequency.

Shown below are some examples of Touchstone® files for 1-port and 2-port networks. Lines beginning with a bang (!) symbol are comments.

Example 7 (Version 1.0):

```
!1-port S-parameter file, single frequency point
# MHz S MA R 50
!freq magS11 angS11
2.000 0.894 -12.136
```

In the above example, the value of S11 at a frequency of 2 MHz is given in magnitude-angle format. The reference impedance is 50 ohms.

Example 8 (Version 1.0):

!1-port Z-parameter file, multiple frequency points # MHz Z MA R 75 !freq magZ11 angZ11 0.99 100 -4 200 0.80 -22 0.707 - 45300 0.40 -62 400 500 0.01 -89

Note that, in the above example, Z11 is normalized to 75 ohms, as given by the reference impedance (R 75) in the option line.

Example 9 (Version 2.0):

```
!1-port Z-parameter file, multiple frequency points
[Version] 2.0
# MHz Z MA
[Number of Ports] 1
[Number of Frequencies] 5
[Reference] 20.0
!freq magZ11 angZ11
       74.25
100
               -4
200
               -22
       60
300
       53.025
               -45
400
       30
               -62
500
       0.75
               -89
```

This example duplicates the data in Example 8, using Version 2.0 syntax. Note that normalization does not apply.

Example 10 (Version 1.0):

```
!2-port H-parameter file, single frequency point
# kHz H MA R 1
! freq magH11 angH11 magH21 angH21 magH12 angH12 magH22 angH22
2 .95 -26 3.57 157 .04 76 .66 -14
```

In the above example, the H-parameters are given in magnitude-angle format, normalized to 1 ohm.

```
Example 11 (Version 2.0):
```

```
!2-port H-parameter file, single frequency point
[Version 2.0]
# kHz H MA R 1
[Number of Ports] 2
[Two-Port Data Order] 21_12
[Number of Frequencies] 1
[Matrix Format] Full
! freq magH11 angH11 magH21 angH21 magH12 angH12 magH22 angH22
2 .95 -26 3.57 157 .04 76 .66 -14
```

In the above example, the H-parameters are given in magnitude-angle format.

Example 12 (Version 1.0):

```
!2-port S-parameter file, three frequency points
# GHz S RI R 50.0
!freq RelS11 ImS11 ReS21 ImS21 ReS12 ImS12 ReS22 ImS22
1.0000 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211
2.0000 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054
10.000 0.3419 0.3336 -0.0134 0.0379 -0.0134 0.0379 0.3419 0.3336
```

In the above example, the S-parameter data is given in real-imaginary format, with a 50 ohm reference impedance.

3-port and 4-port Networks

Rules for Version 1.0 Files:

The network parameter data for a 3-port or 4-port network is arranged in a matrix row-wise order, with each line of data representing one row of the matrix. In other words (as shown below), the data for a 3-port network is entered as three lines of data, with each line containing three data pairs (i.e. a 3x3 matrix of network parameter values). Likewise, the data for a 4-port network is entered as four lines with four data pairs per line (a 4x4 matrix). As required by the general rules, each network parameter data group is preceded by the frequency value at which the data was taken.

3-port Full network description <frequency value> <N11> <N12> <N13> <N21> <N22> <N23> <N31> <N32> <N33>

4-port Full network description <frequency value> <N11> <N12> <N13> <N14> <N21> <N22> <N23> <N24> <N31> <N32> <N33> <N34> <N41> <N42> <N43> <N44>

where *frequency value*

frequency at which the network parameter data was taken or derived.

N11, *N12*, etc. network parameter data, where Nij represents a pair of data values.

As usual, network parameter data is entered in magnitude-angle, dB-angle or real-imaginary format (i.e. pairs of values) as specified by the option line. All entries in a data line are separated by one or more whitespace characters; a data line itself is terminated by a newline character (CR or CR/LF)..

Shown below is an example of an S-parameter description of a 4-port network.

Example 13 (Version 1.0):

```
! 4-port S-parameter data, taken at three frequency points
# GHz S MA R 50
5.00000 0.60 161.24 0.40 -42.20 0.42 -66.58 0.53 -79.34 !row 1
       0.40 -42.20 0.60 161.20 0.53 -79.34 0.42 -66.58 !row 2
       0.42 -66.58 0.53 -79.34 0.60 161.24 0.40 -42.20 !row 3
       0.53 -79.34 0.42 -66.58 0.40 -42.20 0.60 161.24 !row 4
6.00000 0.57 150.37 0.40 -44.34 0.41 -81.24 0.57 -95.77 !row 1
        0.40 -44.34 0.57 150.37 0.57 -95.77 0.41 -81.24 !row 2
        0.41 -81.24 0.57 -95.77 0.57 150.37 0.40 -44.34 !row 3
        0.57 -95.77 0.41 -81.24 0.40 -44.34 0.57 150.37 !row 4
7.00000 0.50 136.69 0.45 -46.41 0.37 -99.09 0.62 -114.19 !row 1
0.45 -46.41 0.50 136.69 0.62 -114.19 0.37 -99.09 !row 2
                               136.69 0.45 -46.41 !row 3
0.37 -99.09 0.62 -114.19 0.50
0.62 -114.19 0.37 -99.09 0.45
                               -46.41 0.50 136.69 !row 4
```

Note that the data pairs do not have to be aligned in columns; the only requirement is that there be 3 (3-port networks) or 4 (4-port networks) pairs of n-port parameters per data line.

Rules for Version 2.0 Files:

As noted earlier and as required by the general rules, each group of network parameter data is preceded by the frequency value at which the data was taken. The rest of the data for that frequency may follow on the same line or be split across multiple lines with intervening line-termination characters. Each frequency point must begin after a line-termination character on the first column of the line.

For files using a [Matrix Format] of Lower or Upper, data is still represented in a row-wise format. "Row" here refers to the arrangement of port data into rows and columns by relationship, not in terms of actual lines of data in the Touchstone file text (e.g., Sij refers to the S-parameters from port j to port i; the data is therefore associated with row i and column j). In a Full Matrix, data for all elements in a matrix row must be shown before data for the next row can be shown.

Matrices using the Upper format will include explicit data for row 1 ports (i.e., S11, S12...S1n) before any data for row 2 is shown (i.e., S22, S23...S2n). In the Upper format, each successive row will contain one fewer element than the previous row. The element removed is the column number (current row -1). For example, the first element of the second row of data is S22. S21 is not shown, as it is assumed to be identical to S12 from symmetry. The final element in an Upper matrix will be Snn, where n is the total number of ports, representing the only data for that row.

In the Lower format, each successive row will contain one more element than the previous row. The first row consists of only one element, S11. The final row will contain elements for each column from 1 to n, where n is the total number of ports.

Therefore, for a three-port matrix, data would be ordered as shown below.

[Matrix Format] Lower < frequency value> <N11> <N21> <N22> <N31> <N32> <N33>

[Matrix Format] Upper < frequency value> <N11> <N12> <N13> <N22> <N23> <N33>

1

where frequency value	frequency at which the network parameter data was taken or derived.
N11, N12, etc.	network parameter data, where Nij represents a pair of data values.

5-port and Above Networks

The n-port parameters for 5-port and above networks are also arranged in a matrix row-wise order.

Rules for Version 1.0 Files:

Version 1.0 files are limited to a maximum of 4 network parameter data pairs per line, additional entries beyond the first four pairs in the matrix row must be continued on the following line(s). Each row of the matrix must start on a new line.

Rules for Version 2.0 Files:

Version 2.0 files may continue data on the same line, or across multiple lines. As usual, each group of network data pairs is preceded by the frequency value at which this data was taken.

For files using a [Matrix Format] of Lower or Upper, data is still represented in a row-wise format, as shown for 3- and 4-port networks above.

These rules are illustrated by showing the format for a 6-port network:

6-port Full network format (single frequency point)		
<frequency value=""> <n11> <n12> <n13> <n14></n14></n13></n12></n11></frequency>	!row 1	
<n15> <n16></n16></n15>		
<n21> <n22> <n23> <n24></n24></n23></n22></n21>	!row 2	
<n25> <n26></n26></n25>		$\langle \nabla \rangle$
<n31> <n32> <n33> <n34></n34></n33></n32></n31>	!row 3	
<n35> <n36></n36></n35>		
<n41> <n42> <n43> <n44></n44></n43></n42></n41>	!row 4	
<n45> <n46></n46></n45>		
<n51> <n52> <n53> <n54></n54></n53></n52></n51>	!row 5	
<n55> <n56></n56></n55>		
<n61> <n62> <n63> <n64></n64></n63></n62></n61>	!row 6	
<n65> <n66></n66></n65>		
(nont I original formed (air als frequence or a sint)		

6-port Lower network format (single frequency point)	
<frequency value=""> <n11></n11></frequency>	!row 1
< <i>N21</i> > < <i>N22</i> >	!row 2
<n31> <n32> <n33></n33></n32></n31>	!row 3
<n41> <n42> <n43> <n44></n44></n43></n42></n41>	!row 4
<n51> <n52> <n53> <n54><n55></n55></n54></n53></n52></n51>	!row 5
<n61> <n62> <n63> <n64></n64></n63></n62></n61>	!row 6
<n65> <n66></n66></n65>	

6-port Upper network format (single frequency point)	
<frequency value=""> <n11> <n12> <n13> <n14></n14></n13></n12></n11></frequency>	!row 1
<n15> <n16></n16></n15>	
<n22> <n23> <n24></n24></n23></n22>	!row 2
<n25> <n26></n26></n25>	
< <i>N33</i> > < <i>N34</i> >	!row 3
<n35> <n36></n36></n35>	
<n44><n45> <n46></n46></n45></n44>	!row 4

<n55> <n56></n56></n55>	!row 5
<n66></n66>	!row 6
where	

frequency value	frequency at which the network parameter data was taken or derived.
<i>N11</i> , <i>N12</i> , etc.	network parameter data, where Nij represents a pair of data values.

As shown, each row of matrix data extends over two lines of the file, and each new row of the matrix starts on a new line. As usual, n-port parameters values are entered in pairs according to the format specified in the option line and each entry is separated by whitespace.

Following is a more detailed example illustrating the Full data matrix for a 10-port network. The Y-parameter data is in magnitude-angle format, and is for a single frequency.

Example 14 (Version 1.0):

Example 14 (version 1.0).	
<pre># frequency_unit Y MA R impedance</pre>	
<pre>freq magY11 angY11 magY12 angY12 magY13 angY13 magY14 angY14</pre>	! 1st row
<pre>magY15 angY15 magY16 angY16 magY17 angY17 magY18 angY18</pre>	
<pre>magY19 angY19 magY1,10 angY1,10</pre>	
magY21 angY21 magY22 angY22 magY23 angY23 magY24 angY24	! 2nd row
magY25 angY25 magY26 angY26 magY27 angY27 magY28 angY28	
magY29 angY29 magY2,10 angY2,10	
magY31 angY31 magY32 angY32 magY33 angY33 magY34 angY34	! 3rd row
magY35 angY35 magY36 angY36 magY37 angY37 magY38 angY38	
magY39 angY39 magY3,10 angY3,10	
magY41 angY41 magY42 angY42 magY43 angY43 magY44 angY44	! 4th row
magY45 angY45 magY46 angY46 magY47 angY47 magY48 angY48	
magY49 angY49 magY4,10 angY4,10	
magY51 angY51 magY52 angY52 magY53 angY53 magY54 angY54	! 5th row
magY55 angY55 magY56 angY56 magY57 angY57 magY58 angY58	
magY59 angY59 magY5,10 angY5,10	
	! 6th row
magY65 angY65 magY66 angY66 magY67 angY67 magY68 angY68	
magY69 angY69 magY6,10 angY6,10	
magY71 angY71 magY72 angY72 magY73 angY73 magY74 angY74 📃 📉	! 7th row
magY75 angY75 magY76 angY76 magY77 angY77 magY78 angY78	
magY79 angY79 magY7,10 angY7,10	
magY81 angY81 magY82 angY82 magY83 angY83 magY84 angY84	! 8th row
magY85 angY85 magY86 angY86 magY87 angY87 magY88 angY88	
magY89 angY89 magY8,10 angY8,10	
magY91 angY91 magY92 angY92 magY93 angY93 magY94 angY94	! 9th row
magY95 angY95 magY96 angY96 magY97 angY97 magY98 angY98	
magY99 angY99 magY9,10 angY9,10	
!10th row	
<pre>magY10,1 angY10,1 magY10,2 angY10,2 magY10,3 angY10,3 magY10,</pre>	,4 angY10,4
<pre>magY10,5 angY10,5 magY10,6 angY10,6 magY10,7 angY10,7 magY10,</pre>	,8 angY10,8
magY10,9 angY10,9 magY10,10 angY10,10	

Noise Parameters

Noise parameters may be included in Touchstone® data files. However, they may only be included in 2-port network descriptions. Noise data follows the G-, H-, S-, Y-, or Z-parameter data for all frequency

points. Note that the rules for noise parameter data are significantly different than the rules for the S-parameter, Z-parameter, etc. data elsewhere in Touchstone® files.

Each line of noise parameter data has the following five entries: $\langle x1 \rangle \langle x2 \rangle \langle x3 \rangle \langle x4 \rangle \langle x5 \rangle$

where <i>x1</i>	Frequency, in the units specified on the option line, or GHz, if no units are specified. The first group of noise data must have a frequency less than or equal to the highest frequency used for the S-parameter, Z-parameter, etc. data earlier
	in the file.
<i>x2</i>	Minimum noise figure in dB.
х3	Source reflection coefficient to realize minimum noise figure. This is a magnitude, regardless of the format specified on the option line. The values used for x_3 and x_4 form a complex pair, taken with reference to the impedance value specified on the option line. If no impedance is listed on the option line, the assumed reference is 50 ohms.
<i>x4</i>	Phase of the reflection coefficient, in degrees. As noted above, this is taken with respect to the reference specified on the option line or, if no impedance is listed, an assumed value of 50 ohms.
x5	Effective noise resistance. A simulator requires this parameter to meet physical requirements. If the user-supplied $x5$ value is less than allowed for this requirement, then a simulator may force this $x5$ value to the lowest physical limit. For Version 1.0 files, this is normalized to the impedance specified on the option line, or 50 ohms if no value is given specified. No normalization is assumed for Version 2.0 files.

Note that the frequencies for noise parameters and network parameters need not match. The only requirement is that the first noise parameter frequency be less than or equal to the highest network parameter frequency. For Version 1.0 files, this allows the file processor to determine where the network parameters end and the noise parameters begin. For Version 2.0 files, the [Number of Frequencies] and [Number of Ports] keywords specify the size of the network parameter data expected before any noise parameters begin. As with network parameter data, all noise parameter data must be arranged in increasing order of frequency

The [Number of Noise Frequencies] keyword is required if any noise parameters are present in the file. The [Number of Noise Frequencies] keyword is prohibited if no noise parameters are present in the file.

The [Reference] and [Number of Ports] keywords have no effect on noise parameter data.

In both Version 1.0 and Version 2.0, each noise parameter frequency and associated data must be grouped into a single line, terminated with a newline character.

Example 15 (Version 1.0):

```
!2-port network, S-parameter and noise data
!Default MA format, GHz frequencies, 50 ohm reference, S-parameters
#
2 .95 -26 3.57 157 .04 76 .66 -14
22 .60 -144 1.30 40 .14 40 .56 -85
! NOISE PARAMETERS
4 .7 .64 69 .38
```

18 2.7 .46 -33 .40

```
Example 16 (Version 2.0):
!2-port network, S-parameter and noise data
!Default MA format, GHz frequencies, 50 ohm reference, S-parameters
[Version] 2.0
#
[Number of Ports] 2
[Number of Frequencies] 2
[Number of Noise Frequencies] 2
[Reference] 50 25.0
2 .95 -26 3.57 157 .04 76 .66 -14
22 .60 -144 1.30 40 .14 40 .56 -85
! NOISE PARAMETERS
4 .7 .64 69 19
18 2.7 .46 -33 20
                            , ~
                                    X
                                                   Ni
```

COMPATIBILITY NOTES

In the original proprietary Touchstone[®] specification, several restrictions existed that may not apply across implementations and do not apply to Version 1.0 or 2.0 files:

- The dB/angle form was not allowed for G-, H-, Y- and Z-parameters. Only magnitude/angle and real/imaginary pairs were permitted for non-S-parameter data.
- Y- and Z-parameters were not allowed for 3-port networks or larger.
- The total number of ports that could be represented in any Touchstone® file was 99.

Version 1.0 and Version 2.0 files differ in two additional respects:

• G-, H-, Y- and Z- parameters are normalized in Version 1.0 but are not normalized in Version 2.0.

• Effective noise resistance in noise parameter data is considered normalized in Version 1.0 but is not normalized in Version 2.0.

Page 19