Peak Distortion Analysis
implemented in VHDL-AMS

IBIS Advanced Technology Modeling task group

September 5, 2006

Arpad Muranyi
Signal Integrity Engineering
Intel Corporation

arpad.muranyi@intel.com

page 1

= |



Background

It all started with the discussions in the IBIS Macro Modeling
subcommittee (now called Advanced Technology Modeling) on
the Cadence API proposal which claims that the *-AMS
languages are not sufficient for channel analysis
http://www.vhdl.org/pub/ibis/summits/jul06/wang.pdf

The committee has a hard time to disprove this claim because so
far no one has done it using the *-AMS language(s) and tools

Well, let’s give it a try and code up the algorithm found in Brian
Casper’s publicly available presentation in VHDL-AMS...

http://download.intel.com/education/highered/sienal/ELCT865/Class2 15 16 Peak
Distortion Analysis.ppt

page 2 CPD



The simulation setup

e For the sake of this initial experiment, a simple circuit was used
to generate a reasonable pulse response

e The circuit of the ‘““channel’” consists of a Thevenin driver using a
pulse voltage source and a resistor, an ideal T-line, an inductor
and capacitor at the end

— details shown on the next page

* For the sake of this experiment I didn’t care whether the channel
was realistic or not, as long as it gave a reasonable pulse response

e The capacitor model has two *‘architectures”
— a normal capacitor

— a normal capacitor plus the PDA algorithm

intel ) page 3 CPD



Schematics of the simulated circuit

el LT OREEY

1V, 200 ps wide, 1 ps edge
100 Q

100 Q, 0.5 ns, lossless

10 nH

1 pF page 4




Overview of the operation of the model

* A normal time domain simulation is started
— this example uses the first 3 ns of the simulation to generate the pulse response

— during this portion of the simulation the points of the pulse response waveform
are stored in a “real_vector” (3000 points in this example)

— a 1 ps fixed time step is used to make the waveform processing simpler

* At the 3 ns time point of the simulation a process is activated
— this is executed in the digital solver of the tool (which makes it fast)

— the process considers the peak of the pulse response the “cursor” point and finds
the index of that point in the vector

— then the process executes a function twice to generate an upper and lower eye
contour using the methodology described in Brian Casper’s presentation

e The time domain simulation is continued for another 200 ps
— this is done to plot the content of the upper and lower eye contour vectors

intel ) page 5 CPD



Pulse response of the circuit




Adding the results of the PDA post processing step

I pls

row
cl/lowereyen

I cl/uppereyen

PDA result

Pulse response TD simulation . ”
worst eye




Z.ooming in on the worst eye portion of the plot




Summary, benchmarks and future work

e This experiment implemented the basic equations of

PDA only

— pg. 45 — 64 in Brian Casper’s presentation (cited on pg. 2)
— no cross talk,

— no jitter,

— no statistical ISI or BER analysis included

 Benchmarks with a 3000 point pulse response
— approximately 230 ms CPU time without PDA algorithm
— approximately 240 ms CPU time with PDA algorithm

e This experiment illustrates that VHDL-AMS can be

used for *‘signal processing’ algorithms
— still need to show that the more computationally intensive
statistical analysis can also be implemented
— implement same in Verilog-A(MS)

page 9

= |



BACKUP

VHDL-AMS code

= |



Code - processes (digital equations)

GetCursorIndex : process 1is

begin
wait for 3.0e-9;
CursorIndex <= FindCursorIndex (Wfm) ;
wait;

end process GetCursorIndex;

GetEye : process 1is

begin
wait on CursorIndex;
——report "Cursor index is: " & integer'image (CursorIndex);

UpperEye <= EyeContour (Wfm, CursorIndex, BitWidthPts, "U");
LowerEye <= EyeContour (Wfm, CursorIndex, BitWidthPts, "L");
end process GetEye;

Ticker : process 1is
begin
wait for 1.0e-12;
if (Count < WfmPts) then
Wfm (Count) <= Vout;
Count <= Count + 1;
elsif (EyeIndex < BitWidthPts) then
EyeIndex <= EyelIndex + 1;
end if;
end process Ticker;

page 11

> |



Code - analog equations

break on Count, EyelIndex;

if (domain = quiescent_domain) use
Vout == VO0;
else
Iout == Scale * Cval * Vout'dot;
end use;

if (now > 3.0e-9) use
UpperEyeV == UpperEye (EyeIndex) ;

LowerEyeV == LowerEye (EyelIndex);
else

UpperEyeV == 0.0;

LowerEyeV == 0.0;
end use;

end architecture PDA_on;

page 12



Code - function FindCursorIndex

function FindCursorIndex (Wfm : real_vector) return integer is
variable Index : integer := 0;
variable Value : real := 0.0;

begin

for i in Wfm'range loop
if i = 0 then
Value := Wfm(1i);

else
if Wfm(i) > Value then
Value := Wfm(i);
Index := i;
end if;
end if;
end loop;
—— report "Index: " & integer'image (Index) ;

return Index;

page 13



Code - (essentials of) function EyeContour

function EyeContour (Wfm : real_vector;
CursorIndex : integer;
BitWidth : integer;
EyeSelector : string := "L") return real_vector is
begin
while (CursorIndex — BitWidth/2 - i*BitWidth) > 0 loop
i =1+ 1;
end loop;
StartIndex := CursorIndex - BitWidth/2 - (i-1)*BitWidth;
i := 0;

while (StartIndex + (i+1)*BitWidth) <= Wfm'right loop
if StartIndex + i1i*BitWidth + BitWidth/2 = CursorIndex then

if (EyeSelector = "U") then
for j in EyeContour'range loop
EyeContour (j) := EyeContour(j) + Wfm(StartIndex + j-1 + i*BitWidth);
end loop;
end if;
else
if (EyeSelector = "U") then
for j in EyeContour'range loop
EyeContour (j) := EyeContour(j) + realmin(0.0, Wfm(StartIndex + Jj-1 + i*BitWidth));
end loop;
else
for j in EyeContour'range loop
EyeContour (j) := EyeContour(j) + realmax (0.0, Wfm(StartIndex + Jj-1 + i*BitWidth));
end loop;
end if;
end if;
i =1+ 1;
end loop;

return EyeContour;



