

BIRD ID#:
ISSUE TITLE: IBIS-AMI Flow Correction
REQUESTER: Arpad Muranyi, Mentor Graphics, Inc.
DATE SUBMITTED:
DATE REVISED:
DATE ACCEPTED BY IBIS OPEN FORUM:

STATEMENT OF THE ISSUE:

In Section 10, "NOTES ON ALGORITHMIC MODELING INTERFACE AND PROGRAMMING
GUIDE", sub-section 2 describes a flawed reference flow. The intent was
to make non-LTI simulations possible using the GetWave functions of AMI
models, however the order of Step 4 and Step 5, as described in the IBIS
v5.0 specification will only work properly with LTI GetWave functions.

Replace this text:

| 2 APPLICATION SCENARIOS
| =======================
|
|
| 2.1 Linear, Time-invariant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given
| [Model] is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the [Model] is
| described at least in part by an algorithmic model, and that the
| AMI_Init function of that model returns an impulse response for that
| [Model].
|
| 3. The EDA platform loads the shared library containing the algorithmic
| model, and obtains the addresses of the AMI_Init, AMI_GetWave, and
| AMI_Close functions.
|
| 4. The EDA platform assembles the arguments for AMI_Init. These arguments
| include the impulse response of the channel driving the [Model], a
| handle for the dynamic memory used by the [Model], the parameters for
| configuring the [Model], and optionally the impulse responses of any
| crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory, places the address of the start of the dynamic memory in
| the memory handle, computes the impulse response of the block and
| passes the modified impulse response to the EDA tool. The new
| impulse response is expected to represent the filtered response.
|
| 7. The EDA platform completes the rest of the simulation/analysis using
| the impulse response from AMI_Init as a complete representation of the
| behavior of the given [Model].
|
| 8. Before exiting, the EDA platform calls AMI_Close, giving it the address
| in the memory handle for the [Model].
|
| 9. AMI_Close de-allocates the dynamic memory for the block and performs

Flow_BIRD_1.txt page 1

| whatever other clean-up actions are required.
|
| 10. The EDA platform terminates execution.
|
|
| 2.2 Nonlinear, and / or Time-variant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given block
| is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the block is
| described at least in part by an algorithmic model.
|
| 3. The EDA platform loads the shared library or shared object file
| containing the algorithmic model, and obtains the addresses of the
| AMI_Init, AMI_GetWave, and AMI_Close functions.
|
| 4. The EDA platform assembles the arguments for AMI_Init. These arguments
| include the impulse response of the channel driving the block, a handle
| for the dynamic memory used by the block, the parameters for
| configuring the block, and optionally the impulse responses of any
| crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory and places the address of the start of the dynamic memory in
| the memory handle. AMI_Init may also compute the impulse response
| of the block and pass the modified impulse response to the EDA tool.
| The new impulse response is expected to represent the filtered
| response.
|
| 7. A long time simulation may be broken up into multiple time segments.
| For each time segment, the EDA platform computes the input waveform to
| the [Model] for that time segment. For example, if a million bits are
| to be run, there can be 1000 segments of 1000 bits each, i.e. one time
| segment comprises 1000 bits.
|
| 8. For each time segment, the EDA platform calls the AMI_GetWave function,
| giving it the input waveform and the address in the dynamic memory
| handle for the block.
|
| 9. The AMI_GetWave function computes the output waveform for the block. In
| the case of a transmitter, this is the Input voltage to the receiver.
| In the case of the receiver, this is the voltage waveform at the
| decision point of the receiver.
|
| 10. The EDA platform uses the output of the receiver AMI_GetWave function
| to complete the simulation/analysis.
|
| 11. Before exiting, the EDA platform calls AMI_Close, giving it the address
| in the memory handle for the block.
|
| 12. AMI_Close de-allocates the dynamic memory for the block and performs
| whatever other clean-up actions are required.
|
| 13. The EDA platform terminates execution.
|
|
| 2.3 Reference system analysis flow
| ==================================
|
| System simulations will commonly involve both TX and RX algorithmic
| models, each of which may perform filtering in the AMI_Init call, the
| AMI_Getwave call, or both. Since both LTI and non-LTI behavior can be
| modeled with algorithmic models, the manner in which models are

Flow_BIRD_1.txt page 2

| evaluated can affect simulation results. The following steps are
| defined as the reference simulation flow. Other methods of calling
| models and processing results may be employed, but the final simulation
| waveforms are expected to match the waveforms produced by the reference
| simulation flow.
|
| The steps in this flow are chained, with the input to each step being
| the output of the step that preceded it.
|
| Step 1. The simulation platform obtains the impulse response for the
| analog channel. This represents the combined impulse response
| of the transmitter's analog output, the channel and the
| receiver's analog front end. This impulse response represents
| the transmitter's output characteristics without filtering, for
| example, equalization.
|
| Step 2. The output of Step 1 is presented to the TX model's AMI_Init
| call. If Use_Init_Output for the TX model is set to True, the
| impulse response returned by the TX AMI_Init call is passed
| onto Step 3. If Use_Init_Output for the TX model is set to
| False, the same impulse response passed into Step 2 is passed
| on to step 3.
|
| Step 3. The output of Step 2 is presented to the RX model's AMI_Init
| call. If Use_Init_Output for the RX model is set to True, the
| impulse response returned by the RX AMI_Init call is passed
| onto Step 4. If Use_Init_Output for the RX model is set to
| False, the same impulse response passed into Step 3 is passed
| on to step 4.
|
| Step 4. The simulation platform takes the output of step 3 and combines
| (for example by convolution) the input bitstream and a unit
| pulse to produce an analog waveform.
|
| Step 5. The output of step 4 is presented to the TX model's AMI_Getwave
| call. If the TX model does not include an AMI_Getwave call,
| this step is a pass-through step, and the input to step 5 is
| passed directly to step 6.
|
| Step 6. The output of step 5 is presented to the RX model's AMI_Getwave
| call. If the RX model does not include an AMI_Getwave call,
| this step is a pass-through step, and the input to step 6 is
| passed directly to step 7.
|
| Step 7. The output of step 6 becomes the simulation waveform output at
| the RX decision point, which may be post-processed by the
| simulation tool.
|
| Steps 4 though 7 can be called once or can be called multiple times to
| process the full analog waveform. Splitting up the full analog waveform
| into mulitple calls minimized the memory requirement when doing long
| simulations, and allows AMI_Getwave to return model status every so many
| bits. Once all blocks of the input waveform have been processed, TX
| AMI_Close and RX AMI_close are called to perform any final processing
| and release allocated memory.

--

with the following text:

(Due to the high percentage of modified or new text, the changes are not
marked by the usual "*" characters at the beginning of each line).

| 2 APPLICATION SCENARIOS

Flow_BIRD_1.txt page 3

| =======================
|
|
| 2.1 Linear, Time-invariant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given
| [Model] is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the [Model] is
| described at least in part by an algorithmic model.
|
| 3. The EDA platform loads the shared library or shared object file
| containing the algorithmic model, and obtains the addresses of the
| AMI_Init, AMI_GetWave, and AMI_Close functions.
|
| 4. The EDA platform assembles the arguments for AMI_Init. These
| arguments include the impulse response of the channel driving the
| block, a handle for the dynamic memory used by the block, the
| parameters for configuring the block, and optionally the impulse
| responses of any crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously
| prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory, places the address of the start of the dynamic memory in the
| memory handle. Depending on the value of Init_Returns_Filter, it
| either computes and returns the filter response of the block, or
| computes the impulse response of the channel modified by the filter
| response of the block.
|
| 7. The EDA platform completes the rest of the simulation/analysis using
| the impulse response from AMI_Init as a complete representation of
| the behavior of the given block combined with the channel, or makes
| use of the filter response returned by AMI_Init to compute the
| behavior of the given block combined with the channel.
|
| 8. Before exiting, the EDA platform calls AMI_Close, giving it the
| address in the memory handle for the block.
|
| 9. AMI_Close de-allocates the dynamic memory for the block and performs
| whatever other clean-up actions are required.
|
| 10. The EDA platform terminates execution.
|
|
| 2.2 Nonlinear, and / or Time-variant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given
| block is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the block is
| described at least in part by an algorithmic model.
|
| 3. The EDA platform loads the shared library or shared object file
| containing the algorithmic model, and obtains the addresses of the
| AMI_Init, AMI_GetWave, and AMI_Close functions.
|
| 4. The EDA platform assembles the arguments for AMI_Init. These
| arguments include the impulse response of the channel driving the
| block, a handle for the dynamic memory used by the block, the
| parameters for configuring the block, and optionally the impulse
| responses of any crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously

Flow_BIRD_1.txt page 4

| prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory and places the address of the start of the dynamic memory in
| the memory handle. Depending on the value of Init_Returns_Filter,
| it either computes and returns the filter response of the block, or
| computes the impulse response of the channel modified by the filter
| response of the block. The EDA platform may make use of the
| impulse response or the filter response returned by AMI_Init in its
| further analysis if needed.
|
| 7. The EDA platform generates a time domain input waveform (stimulus)
| bit pattern. A long simulation may be broken up into multiple time
| segments by the EDA platform. For example, if a million bits are
| to be simulated, there can be 1000 segments of 1000 bits each, i.e.
| one time segment comprises 1000 bits.
|
| 8. For each time segment, the EDA platform calls the transmitter
| AMI_GetWave function, giving it the input waveform and the address
| in the dynamic memory handle for the block.
|
| 9. Depending on the value stored in the Use_Init_Output parameters,
| the EDA platform combines the output of the transmitter AMI_GetWave
| function with the output(s) of the AMI_Init function(s) with the
| impulse response of the channel and passes this result to the
| receiver AMI_GetWave function for each time segment of the
| simulation.
|
| 10. The output waveform of the receiver GetWave function represents the
| voltage waveform at the decision point of the receiver. The EDA
| platform uses this waveform to complete the simulation/analysis.
|
| 11. Before exiting, the EDA platform calls AMI_Close, giving it the
| address in the memory handle for the block.
|
| 12. AMI_Close de-allocates the dynamic memory for the block and performs
| whatever other clean-up actions are required.
|
| 13. The EDA platform terminates execution.
|
|
| 2.3 Reference system analysis flow
| ==================================
|
| System simulations will commonly involve both TX and RX algorithmic
| models, each of which may perform filtering in the AMI_Init call, the
| AMI_Getwave call, or both. Since both LTI and non-LTI behavior can be
| modeled with algorithmic models, the manner in which models are evaluated
| can affect simulation results. The following steps are defined as the
| reference simulation flow. Other methods of calling models and
| processing results may be employed, but the final simulation waveforms
| are expected to match the waveforms produced by the reference simulation
| flow.
|
|
| Step 1. The simulation platform obtains the impulse response for the
| analog channel. This represents the combined impulse response
| of the transmitter's analog output, the channel and the
| receiver's analog front end. This impulse response represents
| the transmitter's output characteristics without filtering, for
| example, equalization.
|
| Step 2. The output of Step 1 is presented to the TX model's AMI_Init
| call. If Init_Returns_Filter for the TX model is set to True,
| the model returns the impulse response of the TX filter. If it
| is set to False, the TX AMI_Init call returns the modified
| impulse response of the channel. The output of TX AMI_Init is

Flow_BIRD_1.txt page 5

| returned to the EDA tool which decides how to make use of it
| depending on the transmitter’s Init_Returns_Filter and
| Use_Init_Output parameters.
|
| Step 3. If the transmitter’s Init_Returns_Filter parameter is set to
| False, the output of Step 2 is presented to the RX model's
| AMI_Init call. If the Init_Returns_Filter is set to True, the
| EDA tool will combine the output of Step 2 with the output of
| Step 1 (for example by convolution) before presenting it to the
| RX model’s AMI_Init call.
|
| Step 4. The output of Step 3 is presented to the RX model's AMI_Init
| call. If Init_Returns_Filter for the RX model is set to True,
| the model returns the impulse response of the RX filter. If it
| is set to False, the RX AMI_Init call returns the filtered
| response of the channel. The output of RX AMI_Init is returned
| to the EDA tool which decides how to make use of it depending
| on the receiver’s Init_Returns_Filter and Use_Init_Output
| parameters.
|
| Step 5. If the receiver’s Init_Returns_Filter parameter is set to
| False, the output of Step 4 may be presented to the user of the
| EDA tool, or the EDA tool can further process the results using
| statistical algorithms. If the Init_Returns_Filter is set to
| True, the EDA tool will combine the output of Step 4 with the
| output of Step 3 (for example by convolution) before presenting
| it to the user of the EDA tool, or before continuing with the
| statistical processing of these results.
|
| Step 6. The simulation platform produces a digital stimulus waveform. A
| digital stimulus waveform is 0.5 when the stimulus is “high”,
| -0.5 when the stimulus is “low”, and may have a value between
| -0.5 and 0.5 such that transitions occur when the stimulus
| crosses 0.
|
| Step 7. The output of step 6 is presented to the TX model's AMI_Getwave
| call. If the TX model does not include an AMI_Getwave call,
| this step is a pass-through step, and the input to step 7 is
| passed directly to step 8.
|
| Step 8. The EDA simulation platform combines (for example by
| convolution) the output of step 7 with the output of several
| different previous steps depending on the value of the
| transmitter’s and receiver’s Init_Returns_Filter and
| Use_Init_Output settings as follows:
|
| If TX Use_Init_Output = False, combine the outputs of Step 7
| and Step 1.
|
| If TX Use_Init_Output = True and TX Retuns_Filter = False,
| combine the outputs of Step 7 and Step 2.
|
| If TX Use_Init_Output = True and TX Retuns_Filter = True,
| combine the outputs of Step 7, Step 1 and Step 2.
|
| In addition, the EDA simulation platform will also combine the
| output of Step 4 with the above if RX Use_Init_Output = True.
| When RX Init_Returns_Filter = True, this is a relatively straight
| forward operation, but when RX Init_Returns_Filter = False, the
| EDA simulation platform will have to take additional steps to
| prevent the duplication of the content that is present in the
| output of Steps 2 and/or 3 (for example by deconvolution). This
| is why RX Init_Returns_Filter = True is preferred when RX
| Use_Init_Output = True.
|
| Step 9. The output of step 8 is presented to the RX model's AMI_Getwave
| call. If the RX model does not include an AMI_Getwave call,

Flow_BIRD_1.txt page 6

| this step is a pass-through step, and the input to step 9 is
| passed directly to step 10.
|
| Step 10. The output of step 9 becomes the simulation waveform output at
| the RX decision point, which may be post-processed by the
| simulation tool or presented to the user as is.
|
| Steps 6 though 9 can be called once or can be called multiple times to
| process the full analog waveform. Splitting up the full analog waveform
| into multiple calls reduces the memory requirements when doing long
| simulations, and allows AMI_Getwave to return model status every so many
| bits. Once all blocks of the input waveform have been processed, TX
| AMI_Close and RX AMI_close are called to perform any final processing and
| release allocated memory.

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION

The IBIS-ATM Task Group spent several meetings to discuss the AMI flow
problem and the best solution for it in the months of September, October
and November of 2009. The IBIS-ATM Task Group arrived to the final version
of the proposed flow on November 17, 2009.

A graphical representation of the flow that is in described in the IBIS
v5.0 specification can be found on the first page of the following
presentation:

http://www.vhdl.org/pub/ibis/macromodel_wip/archive/20090921/arpadmuranyi/AMI%20flows:%20I
BIS%205.0%20and%202009%20Sept%208,15%20proposals/AMI_Flows.pdf

The yellow highligted symbols on the second page indicate what the order
should have been to achieve the goal of simulating non-LTI sysmtems with
the GetWave functions.

The ATM Task Group also discovered during the discussions that certain
conditions would require a deconvolution operation which is known to be
a challange due to its numerical instability. To remedy this oversight,
a new Boolean parameter "Init_Returns_Filter" was also introduced in the
proposed flow to provide a mechanizm to eliminate the need for using
deconvolution in the flow.

The graphical representation of the new proposed flow can be found in
the following presentation:

http://www.vhdl.org/pub/ibis/macromodel_wip/archive/20091118/arpadmuranyi/Final%20AMI%20fl
ow%20for%20IBIS%205.1/AMI_Flows_5_final.pdf

ANY OTHER BACKGROUND INFORMATION:

Flow_BIRD_1.txt page 7

