Gate Modulation Solution Validated by VHDL-AMS IBIS Implementation

European IBIS Summit at DATE 2007
April 19th, 2007

Antonio Girardi
Giacomo Bernardi
Roberto Izzi

STMicroelectronics
Flash Memory Group
R&D CAD
Agenda

- IBIS “Gate Modulation” solution: ST Proposal overview
- Implementation and Validation by the VHDL-AMS IBIS architecture
- BIRD98 & ST proposal convergence
- Conclusions
The IBIS simulation of a simultaneous switching noise does not model correctly the MOS Vgs voltage variation because the working point can move only along the same Vgs = VDD characteristic.

The higher is the bouncing noise, the higher is the mismatching between IBIS and Spice results.
Benchark SPICE vs IBIS Standard (IBIS-STD)

SSO – Rise Transition

<table>
<thead>
<tr>
<th>Relative Percentage Error</th>
<th>SPICE</th>
<th>IBIS-STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Delay</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Max overshoot/undershoot</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Diff. Power supply</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>

Test-case: 128M Nor Flash Memory (120nm)

SSO – Fall Transition

Initial case of study: Simultaneous Switching Output (SSO) simulations by IBIS standard (IBIS-STD), compared with the related SPICE ones, have revealed strong discrepancies.

Initially, no equivalent load/impedance has been considered on the power and ground nodes of IBIS models.
Gate Modulation Coefficients

The ST “Gate Modulation” solution is based on the introduction of two coefficients, one for the Pullup and one for the Pulldown stage, which modulate properly the IBIS standard current (I\textsubscript{IBIS-STD}) when a bouncing noise occurs on the power and ground nodes.

\[I(V_{gs}, V_{ds}) = K_{ssn}(V_{gs},V_{ds}) \times I(V_{gs}=V_{DD},V_{ds}) \]

Effective SPICE current \hspace{1cm} IBIS standard current

\[I_{\text{effective}} = K_{ssn}(V_{gs},V_{ds}) \times I_{\text{IBIS-STD}} \]

\[
K_{ssn-pulldown} = \frac{I(v_{gs},v_{ds})}{I(v_{gs}=v_{DD},v_{ds})} \\
K_{ssn-pullup} = \frac{I(v_{gs}=v_{DD},v_{ds})}{I(v_{gs},v_{ds})}
\]
Kssn(Vgs, Vds) Implementation by Table-format

The effort has been focused on identifying a table-format implementation of Kssn coefficients, which could also be the best trade-off between accuracy and development/simulation time.

How can I interpolate them?
Is this approach convenient in terms of development and simulation time?

Note: K means constant value!!!
Gate Modulation Coefficient Characteristics

The K_{ssn} coefficient is independent from the V_{ds} voltage in the saturation zone and, approximatively, also in the linear zone, in the case of small V_{gs} changes.

It implies that one table $K_{ssn}(V_{gs}, V_{ds}=K)$, with K in the saturation zone, can be enough for Pullup and Pulldown, respectively.

Therefore, a Two-Table approach may be a good compromise accuracy-complexity.
Two-Tables Solution

- K has been chosen equal to VDD (best choice if the MOS channel modulation effect is negligible)
- \(K_{ssn}(V_{gs}, V_{ds}=VDD) \) implies that the effective current to be drawn is

\[
I_{\text{effective_pulldown}} = I(V_{gs}, V_{ds}=VDD)
\]

\[
I_{\text{effective_pullup}} = I(V_{sg}, V_{sd}=VDD)
\]
Effective Currents Extraction

Pulldown $I(V_{gs}, V_{ds}=VDD)$ table extraction

Pullup $I(V_{gs}, V_{ds}=VDD)$ table extraction

$V_{sweep}=[-VDD, VDD]$; V_{gate} is kept stable \rightarrow the collected effective current is related to the source voltage (V_s) changes

VHDL-AMS

$I(V_{gs}, V_{ds}=VDD)$ Table \rightarrow Kssn_pulldown

$I(V_{sg}, V_{sd}=VDD)$ Table \rightarrow Kssn_pullup

$I_{\text{effective}} = Kssn \times I_{\text{IBIS-STD}}$

Since it is not possible to change the proprietary code of EDA tools that manage the IBIS models, the unique way identified for implementing and validating the solution has been to use the **VHDL-AMS IBIS** architecture, adding the Gate modulation coefficients algorithm.
Extension of the VHDL-AMS IBIS Implementation

VHDL-AMS IBIS

Traditional IBIS (Muranyi)

entity IBIS_IO is generic (C_comp : real := 4.55e-12;
……………………………………………………………………………………………..
[Pullup Reference] and [Pulldown Reference] values
V_pu_ref : real := 5.0; V_pd_ref : real := 0.0;
Vectors of the IV curve tables
I_pc : real_vector := (0.08, 0.00, 0.00, 0.00);
……………………………………………………………………………………………..
if (Extrapolation = "IV") and (X <= Xdata(0)) then m :=
(Ydata(1) - Ydata(0)) / (Xdata(1) - Xdata(0)); yvalue :=
Ydata(0) + m * (X - Xdata(0));
return yvalue;
……………………………………………………………………………………………..

I-V tables: Pullup&Power_clamp
V-t tables: Rising & Falling waveform
Ramp values: dV/dt_r; dV/dt_f
C_comp values

Gate Modulation Algorithm

Kssn-pulldown & Kssn-pullup

I_effective = Kssn*I_IBIS-STD

+ I(Vgs,Vds=VDD)Pulldown table
I(Vsg,Vsd=VDD) Pullup table
Implementation and Validation Strategy

- NOR Flash memories test-cases
- SSO simulations have been carried out
- The VHDL-AMS IBIS implementation (IBIS-AMS) has been used
- The “Gate modulation” algorithm has been added to the VHDL-AMS IBIS initial code
- Equivalent impedance of power rails is also been considered
A remarkable improvement has been achieved by implementing the ST “Gate Modulation” solution in the IBIS-AMS architecture.

Note: The main contribution on recovering the error on the power/ground signals is due to the equivalent impedance put on the power nodes.
IBIS-STD vs SPICE vs IBIS-AMS Comparison

Additional benchmarking results, extracted recently by SSO simulations on a 512Mb NOR Flash Memory (90nm).
Today it is mandatory to provide to the IBIS community a reliable solution of the “Gate Modulation” problem. In fact, it is becoming a heavy bottleneck in every application in which the SPICE simulations are not a possible alternative.

Especially in the context of system-in-package design, where third parties’ components may only be simulated by IBIS, and the power noise is critical because the ground planes are usually missing, it is impossible to predict fails before of the prototype-phase.

Moreover, it has to be considered that the SPICE simulations seem too time-expensive, as IBIS alternative, in verifying the modern-system, whose complexity is rapidly increasing.

The BIRD98 proposal is already a good solution for solving the “Gate Modulation Effect”, but two changes are advised for making it much more accurate and general purpose. As well as for matching the ST proposal, validated by the IBIS-AMS implementation.
BIRD98 Suggested Change (1)

To consider the instantaneous source voltage value (Vs) instead of the power supply one for the current scaling. This approach is more general purpose. In fact, it is **not always true** that the Vgs instantaneous value is the same of the power supply one during a bouncing noise. A typical case is when the control logic and the final stage are supplied with different supply voltages.

![Circuit Diagram](image)

Vgs = (Vdd – Vgndq) ≠ (Vddq – Vgndq)
BIRD98 Suggested Change (2)

It is preferable to draw the “effective” pullup (pulldown) currents by disconnecting the pulldown (pullup) stage from the pad, instead of the short current. In fact, to short the output pad to the reference node causes a change into the correct behaviour of the control logic driving capability when the control logic and the final stage are supplied by the same supply voltage.

Below are reported the two advised circuits for drawing the “effective” pullup and pulldown currents.
ST Proposal - Lowlights

- The Miller’s capacitances (AC effects) are not included.

- The final-stage’s Ron instantaneous change is still a little bit under estimated compared to spice behaviour.

- This proposal has been developed and validated only for CMOS driver.
ST Proposal - Highlights

- It is a table-format solution
- Validated by the IBIS-AMS architecture on several test-cases
- Good trade-off between accuracy and complexity (both development and simulation time)
- Does not reveal proprietary information (full compliant with IBIS philosophy)
- Easy implementation into transistor-level EDA tools
- This proposal seems a reliable way for solving rapidly the gate modulation problem, which makes IBIS unusable in every non-ideal power supply simulation.
Reference Documents

- BIRD98 proposal (Arpad Muranyi, Intel)
 http://www.vhdl.org/pub/ibis/birds/bird98.txt

- IBIS Simultaneous Switching Output Simulations Criticality (A. Girardi, STMicroelectronics)

- IBIS Gate Modulation Effect Proposal (A. Girardi, STMicroelectronics)

- IBIS Gate Modulation Effect (STMicroelectronics Proposal) (A. Girardi, G. Bernardi, R. Izzi, STMicroelectronics)