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Previous Presentations 

• “Time-Domain Macromodel Extraction” (briefly) 

www.ibis.org/summits/may21/ross1.pdf 

o Nomenclature and some mathematical identities 

o Duality (see presentation for details) 

o Key equation for steepest descent optimization 

o Laplace transform optimization flow for simultaneous 

numerator and denominator coefficients 

o Last column mathematics for a companion matrices (not 
shown here) 

o In place algorithms (mentioned) 

o Constraints 
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Previous Presentations (continued) 

• “SPICE Macromodel Generation” 

www.ibis.org/summits/may21/ross2.pdf 

o Mostly included here 

o Main point is to illustrate a set of circuits (and their 

efficiencies) for generating poles and zeros 

o Pole/zero cancellation is illustrated 

o Cascaded circuits were common practice in operational 

amplifier data book/sheet models 
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TIME-DOMAIN EXTRACTION 

• Goal – Low-order Laplace transform network function from time-
domain measurements (or simulations) as a ratio of polynomials 
in s 

o Noisy measurements 

o Uncoupled networks 

o Least squared error steepest descent algorithm 

• Show some not so well-known mathematical identities 

o Duality 

o Last column mathematics for functions of companion matrices 

o In place algorithms 

• Based on original correspondence 1969 – 1972 with Janez Valand 
(Yugoslavia/Croatia) and actual product implementation (1990’s) 

• Derivations and proofs not shown 

o Proofs based on power series expansions and companion 
matrix relationships 
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Special Notation - Equations 
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Laplace Transform 

Differential Equation 

Difference Equation 

Z Transform 
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Conversions and Responses 

Laplace 

Transform 

Differential 

Equation 

Z Transform 
Difference 

Equation 

B 

D 

Time 

 Responses 

Differential 

Responses 

M(T),  E, 
A, M(T) = exp(AT) 

E, L(T) = ln(E)/T 

L(T),  A, 
|lI-L|        A 

Taylor Series 

(Traditional 

methods) 

Dual of T.S. 

|lI-M|       E 

Numerator 

Coefficients 

Initial 

Conditions 
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Differential           Difference 

Equations          Equations 
dx(t)/dt = Ax(t) 

 

 

A =  

 

 

 

x(t+T) = Mx(t) 

M = exp(AT) 

 

z(t+T) = Ez(t) 

 

 

E = 

 

 

 

dz(t)/dt = Lz(t) 

E = exp(LT) 

L = ln(E)/T 
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Companion Matrices 



Differential           Difference 

Equations              Equations 
x(t) = 
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Recursive Taylor Series 

(Repeat b and c) 
a) Initialize: i = 1, … , n-1  

 

b) Extend:  i = n, … , p  

 

c) Next time step:  i = 0, … , n-1   (Taylor series) 

 

 
R. I. Ross, “Evaluating the Transient Response of a Network 

Function,” Proc. IEEE, vol.55, pp. 615-616, May 1967 
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Differential            Difference 

Eq’n Sensitivities  Eq’n Sensitivities 
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Laplace Transform Extraction (T.S.) 

11 

Expanded on 

next slide 
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Available Constraints 

• Denominator degree (number of poles) 

• Ideal step response (b0=0.0) 

• Numerator degree (number of zeros, where lower 

degree produces less leading edge ripple) 

• Set tS start value, DC offset (y0) 

• Minimum and maximum frequencies for log 

frequency domain plots 

• Initial value 

• Final value 
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Constraints (Oscilloscope Step and 

Impulse Response Extractions) 
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Constraints – Maximally Flat 

Envelope Delay Networks 
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Conclusions 

• Early (1970’s) algorithm outlined for physical 

measurement-based time-domain extraction 

• Most calculations done in place to save memory 

• Most calculations used last-column matrix 

mathematics 

• Many subroutines worked in both the difference 

equation and differential equation domains 

• Laplace transform formulation allowed practical 

constraints to be implemented 

• Result was a Laplace transform polynomial ratio, 

N(s)/D(s), from a time-domain response 
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GENERATING SPICE 

MACROMODELS 
• Preliminary material 

• Macromodel references 

• Networks for poles and zeros (and their efficiencies) 

• Operational amplifier open-loop response 

• Operational amplifier macromodel example 

• Conclusion 
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Automatic Implementation 

• Starting point – Laplace transform H(s) = N(s)/D(s) as 

ratio of polynomials is s 

• Laplace transform, pole/zero, or pole/residue formats 

not interchangeable between EDA tools 

• Lowest common denominator – Berkeley SPICE RLC 

elements and controlled gain elements 

• Implementation based on solving for poles and zeros 

and then cascading unit gain stages with efficient 

grouping. 

• Automatic node numbering 

• Stages referenced to one megohm (MW) resistor 
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SPICE Macromodels  

• G. Boyle, B. Cohn, D. Pederson, J. Solomon, “Macromodeling of 
Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-
State Circuits, Vol. SC-9, No. 6, Dec. 1974, pp. 353-363 

o Dominant and second real pole 

o A commercial vendor macromodel adapted to illustrate a 
general behavioral macromodel generation strategy 

o Strategy can be applied to high-speed networks 

• Cascaded SPICE elements are common practice from several 
vendors, but some macromodels use: 

o Real left-hand plane (LHP) poles and zeros 

o No right-hand plane (RHP) zeros 

o No complex poles or zeros 

o Extractions often based on frequency domain magnitude and 
phase measurements 
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Networks 

• Basic Stages (simple poles and zeros or 

combinations) 

• Constructed Stages (combining several basic 

networks for an overall set of poles and zeros 

• Utility Networks for pole/zero cancelation 

• All-pass Networks for cancellations 

• Efficiencies relative to a single-pole stage (combined 

P+Z stages usually more efficient) 

o Parts per pole+zero relative to 3.0 

o Nodes per pole+zero relative to 1.0 
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Basic Stages 
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Basic Stages 
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Real Pole 



Basic Stages (Continued) 
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Constructed Stages 
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Utility Networks and 

Combinations for Construction 

25 



Utility Networks for Construction 
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Utility Networks (Continued) 
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p2 = 1/RC 



All-Pass Networks (Mirrored P/Z) 
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Open Loop (OL) AC Model from 

Closed Loop (CL) Response 
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A(s) 

Vin    + Vout 

– 
R2 

R1 

Extracted H(s) = Vout/Vin from 

time response = N(s)/D(s) 

 

G = (R1 + R2)/R1 

 

H(s) = A(s)/[1 + A(s)/G] 

 

A(s) = H(s) + H(s)A(s)/G 

A(s) = H(s)/[1 – H(s)/G] 

 

A(s) = [N(s)/D(s)]/[1 – N(s)/GD(s)] 

A(s) = N(s)/[D(s) – N(s)/G] 

 

Poles and zeros of A(s) produces 

OL AC Model 



Operational Amplifier 

AC Model Example 
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Open Loop Poles and Zeros Closed Loop Samples 

and Response 
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Generated 

SPICE 

Macromodel 

Poles and zeros 

shown in radians 

and MHz in the 

macromodel 



Low Frequency Pole 
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3 Poles, 3 Zeros using Cancellations 
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Cancellation 

(9) 

(14) 

 (2) 

(12) 

(11) 

Cancellations 



Last Pole and Last Stages 
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.ENDS 
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Build Strategy Demonstrated 

• Sort (by magnitude) poles and zeros in four bins: 

o Real poles (lowest may be in early stage of operational 

amplifier) 

o Complex-conjugate poles 

o Real zeros 

o Complex-conjugate zeros 

• Model complex-conjugate RHP zeros by all-pass network 14 or 

real RHP zeros by 13 and then in priority order use 9, 8, 7, and 6 

• Model real zeros in priority order 5, 4, and 2 

• Model remaining poles by 3 and 1 

• Apply pole/zero cancellation for any “new” or “fixed” poles or 

zeros 
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Frequency Plots from 

Laplace Transform 

36 
“SS” is small signal 



Conclusion 

• SPICE macromodel generation strategy uses unity 

gain, cascaded RLC pole and zero stages 

• Pole/zero cancellation is effective for adding RHP 

zeros 

• Operational amplifier macromodel illustrates the 

process 

• Process can be applied to any macromodel including 

those for high-speed applications 
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