Time-Domain Extraction and

SPICE Macromodeling

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

DesignCon IBIS Summit
(after DesignCon 2022)
Santa Clara, California and Virtual
April 8, 2022

Previous Presentations

- "Time-Domain Macromodel Extraction" (briefly) www.ibis.org/summits/may21/ross1.pdf
- Nomenclature and some mathematical identities
- Duality (see presentation for details)
- Key equation for steepest descent optimization
- Laplace transform optimization flow for simultaneous numerator and denominator coefficients
- Last column mathematics for a companion matrices (not shown here)
- In place algorithms (mentioned)
- Constraints

Previous Presentations (continued)

- "SPICE Macromodel Generation"
www.ibis.org/summits/may21/ross2.pdf
- Mostly included here
- Main point is to illustrate a set of circuits (and their efficiencies) for generating poles and zeros
- Pole/zero cancellation is illustrated
- Cascaded circuits were common practice in operational amplifier data book/sheet models

TIME-DOMAIN EXTRACTION

- Goal - Low-order Laplace transform network function from timedomain measurements (or simulations) as a ratio of polynomials in s
- Noisy measurements
- Uncoupled networks
- Least squared error steepest descent algorithm
- Show some not so well-known mathematical identities
- Duality
- Last column mathematics for functions of companion matrices
- In place algorithms
- Based on original correspondence 1969 - 1972 with Janez Valand (Yugoslavia/Croatia) and actual product implementation (1990's)
- Derivations and proofs not shown
- Proofs based on power series expansions and companion matrix relationships

Special Notation - Equations

Laplace Transform

Differential Equation

Difference Equation

Z Transform

$$
X(s)=\frac{a_{n-1} s^{n-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

$$
x^{n}(t)+b_{n-1} x^{n-1}(t)+\cdots+b_{0} x(t)=0
$$

$$
\text { initial conditions, } x(0), \cdots, x^{n-1}(0)
$$

$$
x_{n}(t)+d_{n-1} x_{n-1}(t)+\cdots+d_{0} x_{0}(t)=0
$$

initial conditions, $x_{0}(0), \cdots, x_{n-1}(0)$,
$Z(z)=\frac{z\left(c_{n-1} z^{n-1}+\cdots+c_{0}\right)}{z^{n}+d_{n-1} z^{n-1}+\cdots+d_{0}}$.

Conversions and Responses

Differential

Difference

Equations $d \mathbf{x}(t) / d t=\mathbf{A x}(t)$

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & \cdots & -b_{n-1}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{x}(t+T)=\mathbf{M} \mathbf{x}(t) \\
& \mathbf{M}=\exp (\mathbf{A} T)
\end{aligned}
$$

Equations

$$
\mathbf{z}(\dagger+T)=\mathbf{E z}(\dagger)
$$

$$
\mathbf{E}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
-d_{0} & -d_{1} & \cdots & -d_{n-1}
\end{array}\right]
$$

$$
\begin{aligned}
& d \mathbf{z}(t) / d t=\mathbf{L z}(t) \\
& \mathbf{E}=\exp (\mathbf{L} T) \\
& \mathbf{L}=\ln (\mathbf{E}) / T
\end{aligned}
$$

Differential

Difference

Equations

Equations

$$
\begin{aligned}
& \mathrm{x}(\dagger)=\left[x^{0}(t), x^{1}(t), \cdots, x^{n-1}(t)\right]^{T}, \quad \mathrm{z}(\dagger)=\left[x_{0}(t), x_{1}(t), \cdots, x_{n-1}(t)\right]^{T} \\
& \mathrm{a}=\left[a_{n-1}, \cdots, a_{0}\right]^{T}, \\
& \mathbf{B}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
b_{n-1} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
b_{2} & b_{3} & \cdots & 1 & 0 \\
b_{1} & b_{2} & \cdots & b_{n-1} & 1
\end{array}\right] \\
& a=B x(0) \\
& c=\left[c_{n-1} \cdots c_{0}\right]^{T} \\
& \mathbf{D}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
d_{n-1} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
d_{2} & d_{3} & \cdots & 1 & 0 \\
d_{1} & d_{2} & \cdots & d_{n-1} & 1
\end{array}\right] \\
& c=\mathrm{Dz}(0)
\end{aligned}
$$

Recursive Taylor Series (Repeat b and c)

a) Initialize: $i=1, \ldots, n-1$

$$
x(0)=a_{n-1} \quad x^{i}(0)=a_{n-1-i}-\sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)
$$

b) Extend: $i=n, \ldots, p$

$$
x^{i}(t)=-\sum_{j=0}^{n-1} b_{j} x^{i-n-j}(t)
$$

c) Next time step: $i=0, \ldots, n-1 \quad$ (Taylor series)

$$
x^{i}(t+T)=\sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(j-i)!}
$$

R. I. Ross, "Evaluating the Transient Response of a Network Function," Proc. IEEE, vol.55, pp. 615-616, May 1967

Differential

Difference

Eq'n Sensitivities Eq'n Sensitivities

$$
\frac{\partial x^{i}(t)}{\partial a_{j} \partial b_{k}}=\frac{\partial x^{i+j+k}(t)}{\partial a_{0} \partial b_{0}}
$$

$$
\frac{\partial x_{i}(t)}{\partial c_{j} \partial d_{k}}=\frac{\partial x_{i+j+k}(t)}{\partial c_{0} \partial d_{0}}
$$

Laplace Transform Extraction (T.S.)

Expanded on next slide

$$
X(s)=\frac{a_{n-1} s^{n-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

$$
\begin{aligned}
& x(0)=a_{n-1} \\
& x^{i}(0)=a_{n-1-i}-\sum_{j=1}^{i} b_{n-j} x^{i-j}(0), i=1, \cdots, n-1 \\
& \frac{\partial x^{i}(0)}{\partial a_{0}}=0, i=0, \cdots, n-2, \quad \frac{\partial x^{n-1}(0)}{\partial a_{0}}=1 \\
& \frac{\partial x^{i}(0)}{\partial b_{0}}=0, i=0, \cdots, n-1
\end{aligned}
$$

Higher order terms

Next $\mathbf{x}\left(t_{j}\right)$
state with
$T=t_{j}-t_{j-1}$

Update Err terms for next $\mathrm{x}\left(\mathrm{t}_{\mathrm{j}}\right)$ state
$x^{i}(t)=-\sum_{j=0}^{n-1} b_{j} x^{i-n+j}(t), i=n, \cdots, P$
$\frac{\partial x^{i}(t)}{\partial a_{0}}=-\sum_{j=0}^{n-1} b_{j} \frac{\partial x^{i-n+j}(t)}{\partial a_{0}}, i=n, \cdots, P$
$\frac{\partial x^{i}(t)}{\partial b_{0}}=-x^{i-n}(t)-\sum_{j=0}^{n-1} b_{j} \frac{\partial x^{i-n+j}(t)}{\partial b_{0}}, i=n, \cdots, P$

Initialize
Err terms
End test - NO Update $a_{i} \& b_{i}$

New Err \& gradient

Available Constraints

- Denominator degree (number of poles)
- Ideal step response ($b_{0}=0.0$)
- Numerator degree (number of zeros, where lower degree produces less leading edge ripple)
- Set t_{S} start value, DC offset (y_{0})
- Minimum and maximum frequencies for log frequency domain plots
- Initial value
- Final value

Constraints (Oscilloscope Step and Impulse Response Extractions)

Constraints - Maximally Flat Envelope Delay Networks

Conclusions

- Early (1970's) algorithm outlined for physical measurement-based time-domain extraction
- Most calculations done in place to save memory
- Most calculations used last-column matrix mathematics
- Many subroutines worked in both the difference equation and differential equation domains
- Laplace transform formulation allowed practical constraints to be implemented
- Result was a Laplace transform polynomial ratio, $\mathrm{N}(s) / \mathrm{D}(s)$, from a time-domain response

GENERATING SPICE

MACROMODELS

- Preliminary material
- Macromodel references
- Networks for poles and zeros (and their efficiencies)
- Operational amplifier open-loop response
- Operational amplifier macromodel example
- Conclusion

Automatic Implementation

- Starting point - Laplace transform $\mathrm{H}(s)=\mathrm{N}(s) / \mathrm{D}(s)$ as ratio of polynomials is s
- Laplace transform, pole/zero, or pole/residue formats not interchangeable between EDA tools
- Lowest common denominator - Berkeley SPICE RLC elements and controlled gain elements
- Implementation based on solving for poles and zeros and then cascading unit gain stages with efficient grouping.
- Automatic node numbering
- Stages referenced to one megohm (M) resistor

SPICE Macromodels

- G. Boyle, B. Cohn, D. Pederson, J. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of SolidState Circuits, Vol. SC-9, No. 6, Dec. 1974, pp. 353-363
- Dominant and second real pole
- A commercial vendor macromodel adapted to illustrate a general behavioral macromodel generation strategy
- Strategy can be applied to high-speed networks
- Cascaded SPICE elements are common practice from several vendors, but some macromodels use:
- Real left-hand plane (LHP) poles and zeros
- No right-hand plane (RHP) zeros
- No complex poles or zeros
- Extractions often based on frequency domain magnitude and phase measurements

Networks

- Basic Stages (simple poles and zeros or combinations)
- Constructed Stages (combining several basic networks for an overall set of poles and zeros
- Utility Networks for pole/zero cancelation
- All-pass Networks for cancellations
- Efficiencies relative to a single-pole stage (combined P+Z stages usually more efficient)
- Parts per pole+zero relative to 3.0
- Nodes per pole+zero relative to 1.0

Basic Stages

BASIC STAGES:

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P+Z	Nodes Per P $+Z$

1. Real Pole

2. Real Pole, Real Zero

3. Complex-Conjugate Poles

4. Complex-Conjugate Poles, Real Zero

4a. $z<2 \sigma$
4b. $z>\left(\omega^{2}+\sigma^{2}\right) / 2 \sigma$ 0 X X 3 $\mathrm{a}: 1$ 5 2 1.67 0.67 $\mathrm{~b}: 1$ 5

Basic Stages

BASIC STAGES:

1. Real Pole

2. Real Pole, Real Zero

2a. ($\mathrm{z}<\mathrm{p}$)

2b. $(z>p)$

3. Complex-Conjugate Poles

$$
\begin{array}{r}
\frac{v}{1}=\frac{R}{(1+s / p)} \\
C=1 / R p
\end{array}
$$

$$
\begin{aligned}
\frac{V}{l}= & \frac{R(1+s / z)}{(1+s / p)} \\
& R 1=R /(p / z-1) \\
& L=R 1 / p
\end{aligned}
$$

$$
\begin{aligned}
& R 1=R /(z / p-1) \\
& C=1 / R 1 z
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{I}=\frac{R}{\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)} \\
& \\
& \\
& \\
& C=R / 2 \sigma \\
&
\end{aligned}
$$

Basic Stages (Continued)

4. Complex-Conjugate Poles, Real Zero

4a. $(z<2 \sigma)$

$$
\begin{aligned}
\frac{V}{I}= & \frac{R(1+s / z)}{\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)} \\
& C=z / R\left(\omega^{2}+\sigma^{2}\right) \\
& R 2=1 / C(2 \sigma-z) \\
& R 1=R R 2 /(R 2-R) \\
& L=R 1 / z
\end{aligned}
$$

4b. $\left(z>\left(\omega^{2}+\sigma^{2}\right) / 2 \sigma\right)$

$$
\begin{aligned}
& C=\left(2 \sigma /\left(\omega^{2}+\sigma^{2}\right)-1 / z\right) / R \\
& \mathrm{R} 1=1 / \mathrm{C} \\
& \mathrm{~L}=1 / \mathrm{C}\left(\omega^{2}+\sigma^{2}\right)
\end{aligned}
$$

Constructed Stages

CONSTRUCTED STAGES:

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles + Zeros	Stages	Parts	New Nodes	Parts Per P+Z	Nodes Per $\mathbf{P}+\mathbf{Z}$

4. Complex-Conjugate Poles, Real Zero (10 \& 2)

4c. $\left(\omega^{2}+\sigma^{2}\right) / 2 \sigma>z>2 \sigma$

0			X X	3	c: 2	8	4	2.67	1.33

5. Complex-Conjugate Poles, Two Real Zeros (11 \& 2)

0	0			X	4	2	9	5	2.25
		X			1.25				

6. Complex-Conjugate Poles, Complex-Conjugate Zeros (11, 12 \& 2)

	O		X	4	3	14	7	3.5	1.75

7. Two Real Poles, Complex-Conjugate Zeros (12 \& 2)

	\mathbf{O}	X	X		4	2	9	4	$\mathbf{2 . 2 5}$	$\mathbf{1}$
	0				$\max : 3$	13	6	3.25	1.5	

8. Complex-Conjugate Poles, Real Pole, Complex-Conjugate Zeros (12 \& 4)

	\mathbf{O}	\mathbf{X}	X		$\min : 2$	10	5	$\mathbf{2}$	$\mathbf{1}$
	\mathbf{O}		X	5	2	10	6	$\mathbf{2}$	$\mathbf{1 . 2}$

9. Complex-Conjugate Poles Real Pole, Complex-Conjugate Zeros, Real Zero (11, 12 \& 2)

0	0	X	X	6	3	14	7	2.33	1.14
	0		X		$\max : 5$	22	11	3.67	1.83

Utility Networks and

Combinations for Construction

UTILITY NETWORKS AND COMBINATIONS FOR CONSTRUCTION:

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P+Z	Nodes Per P+Z

10. Complex-Conjugate Poles, Fixed Real Zero

| 0
 \wedge fixed | | X
 X | 3 | 1 | 4 | 2 | 1.33 | 0.67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12. Complex-Conjugate Zeros, Real Pole, Fixed Real Pole

	0	4	a: 1	5	2	1.25	0.5
	$\mathrm{X} \times$		b: 1	5	2	1.25	0.5
0	\wedge or^ fix		c: 2	9	4	2.25	1

Utility Networks for Construction

UTILITY NETWORKS FOR CONSTRUCTION:
10. Complex-Conjugate Poles,

Fixed Real Zero

$\underline{v}=$
1

$$
\begin{aligned}
& \frac{R(1+s / z)}{\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)} \\
& L=R / 2 \sigma \\
& C=1 / L\left(\omega^{2}+\sigma^{2}\right) \\
& z=2 \sigma
\end{aligned}
$$

Utility Networks (Continued)

11. Complex-Conjugate Poles, Real Zero,

Fixed Real Zero

11a. $(z 1<2 \sigma)$

$$
\begin{array}{ll|l}
1 & x & \omega \\
\hdashline 0 & & 0 \\
\hline 22 & \mathbf{x} & z
\end{array} \omega
$$

11b. $\left(z 1>\left(\omega^{2}+\sigma^{2}\right) / 2 \sigma\right)$

$$
\begin{array}{ccc|c}
& x & 1 & \omega \\
\hline 0 & & \vdots & \\
z 1 & \sigma & z 2 & \omega
\end{array}
$$

12. Complex-Conjugate Zeros, Real Pole

12a. $(\mathrm{p} 1<2 \sigma$)

$$
\underline{\mathrm{V}}=
$$

$$
\begin{array}{ll}
\frac{V}{l}= & \frac{R(1+s / z 1)(1+s / z 2)}{\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)} \\
L=R / z 1 \\
& C=1 / L\left(\omega^{2}+\sigma^{2}\right) \\
& R 1=R /(2 \sigma / z 1-1) \\
& z 2=1 / R 1 C \\
& C=\left(2 \sigma /\left(\omega^{2}+\sigma^{2}\right)-1 / z 1\right) / R \\
R 1=1 / C z 1 \\
& L=1 / C\left(\omega^{2}+\sigma^{2}\right) \\
& z 2=R / L
\end{array}
$$

12b. $\left(\mathrm{p} 1>\left(\omega^{2}+\sigma^{2}\right) / 2 \sigma\right)$

$\frac{R\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right.}{(1+s / p 1)(1+s / p 2)}$
$C=1 / R p 1$
$L=1 / C\left(\omega^{2}+\sigma^{2}\right)$
$R 1=R /(2 \sigma / p 1-1)$
$\mathrm{p} 2=\mathrm{R} 1 / \mathrm{L}$
$C=1 / L\left(\omega^{2}+\sigma^{2}\right)$
$L=R\left(2 \sigma /\left(\omega^{2}+\sigma^{2}\right)-1 / p 1\right)$
$R 1=L / p 1$
$p 2=1 / R C$

All-Pass Networks (Mirrored P/Z)

ALL-PASS NETWORKS FOR RIGHT-HAND PLANE ZEROS (WITH MIRRORED POLES):

$$
\begin{aligned}
& \underline{v}= \frac{R(1-s / z)}{(1+s / z)} \\
& L=R / z \\
& C=1 / R^{2}
\end{aligned}
$$

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

$$
\underline{v}=\frac{R\left(1-2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)}{\left(1+2 \sigma s /\left(\omega^{2}+\sigma^{2}\right)+s^{2} /\left(\omega^{2}+\sigma^{2}\right)\right)}
$$

$$
\begin{aligned}
& C 1=1 / 2 R \sigma \\
& L 1=1 / C 1\left(\omega^{2}+\sigma^{2}\right) \\
& L 2=R^{2} C 1 \\
& C 2=1 / L 2\left(\omega^{2}+\sigma^{2}\right)
\end{aligned}
$$

ALL-PASS NETWORKS FOR RIGHT HAND PLANE ZEROS (WITH MIRRORED POLES):

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P+Z	Nodes Per P $+Z$

13. RHP Real Zero, Fixed Real Pole

RHP O	X \wedge fixed		2	1	6	3	3	1.5

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

| | RHP O
 RHP O | fixed
 X fixed | 4 | 1 | 10 | 5 | 2.5 | 1.25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Open Loop (OL) AC Model from Closed Loop (CL) Response

Operational Amplifier AC Model Example

Closed Loop Samples and Response

Open Loop Poles and Zeros

Generated SPICE Macromodel

\square
AC Model
$Z e r o s=3$
$Z 1=-1.41 e+007+j 0$
$Z 2=+3.93 e+008-j 3.44 e+008$
$Z 3=+3.93 e+008+j 3.44 e+008$
$P o l e s=5$
$P 1=-4.29 e+008+j 0$
$P 2=-1.75 e+008-j 3.72 e+008$
$P 3=-1.75 e+008+j 3.72 e+008$
$P A=-1.44 e+007+j 0$
$P 5=-8.99 e+003+j 0$

Poles and zeros

 shown in radians and MHz in the macromodel* SETUP PARAMETERS
* NPN Bipolar Junction Transistor Input
* $\mathrm{Vcc}=15 \mathrm{~V}$, Vee $=-15 \mathrm{~V}$
* Input Stage Tail Current $=0.1 \mathrm{~mA}$
MEASURED (OR USER OVERRIDDEN) PARAMETERS
* Srp $=135.3 \mathrm{~V} / \mathrm{us}, \mathrm{Srn}=135.3 \mathrm{~V} / \mathrm{us}$
Avd $=94.211 \mathrm{~dB}$ at RL (Load) $=1 \mathrm{e}+009$ kOhms
$f(0 \mathrm{~dB})=71.8 \mathrm{MHz}$, Phi (Phase Margin) $=222.2 \mathrm{deg}$

Low Frequency Pole

```
\begin{tabular}{llllll} 
EREF 98 & 0 & 49 & 0 & 1
\end{tabular}
* SECOND STAGE POLE AT 1430.8 Hz
```


MHz

Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493
	MHz
Real	
-0.0014308	0
-2.29183	0
-27.8521	-59.2056
-27.8521	59.2056
-68.2775	0

*************** CONSTRUCTED STAGE

* LhP REAL ZERO AT 2.24408 MHZ
* LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ
* LHP REAL POLE AT 2.29183 MHZ
* LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ
*
* LHP ZERO AT 2.24408 MHZ
* NEW LHP ZERO AT 80.0792 MHZ
* LHP COMPLEX POLES AT 27.8521 +/- j 59.2056 MHZ *
$\begin{array}{llll}\text { R106 } & 108 & 106 & 1 e+006\end{array}$
$\begin{array}{llll}\text { R107 } & 108 & 107 & 2.38227 e+007\end{array}$
C106 $107 \quad 98 \quad 8.34275 e-017$
$\begin{array}{llll}L 106 & 106 & 98 & 0.070922\end{array}$
$\begin{array}{llllll}G 106 & 108 & 98 & 49 & 105 & \text { le-006 }\end{array}$
* LHP COMPLEX ZEROS AT 62.5479 +/- j 54.7493 MHZ
* LHP POLE AT 2.29183 MHZ
* NEW LHP POLE AT 56.2663 MHZ
*

R109 $110 \quad 109 \quad 1 e+006$
R110 $109 \quad 98 \quad 18662.5$
C109 $110 \quad 109 \quad 6.94444 \mathrm{e}-014$
L109 $109 \quad 98 \quad 5.27888 \mathrm{e}-005$

$G 109$	110	98	49	108	$1 e-006$

* LHP ZERO AT 56.2663 MHZ
* LHP POLE AT 80.0792 MHZ *
$\begin{array}{llll}\text { R111 } & 112 & 111 & 1 e+006\end{array}$
$\begin{array}{llll}\text { R112 } & 111 & 98 & 423218\end{array}$
$\begin{array}{llll}\text { L111 } & 111 & 98 & 0.000841133\end{array}$

$G 111$	112	98	49	110	$1 e-006$

************ END OF CONSTRUCTED STAGE

3 Poles, 3 Zeros using Cancellations

Last Pole and Last Stages

MHz	
Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493
MHz	
Real	Imaginary
-0.0014308	0
-2.29183	0
-27.8521	-59.2056
-27.8521	59.2056
-68.2775	0

```
* LHP POLE AT 68.2775 MHZ
lllll
* COMmON mOdE gAIN STAGE WITH zERO AT 20 khz
*
R57 59 57 le+006
C57 59 57 7.95775e-012
R58 59 98 1
E57 [57 5% 98 49 3
\begin{tabular}{|c|c|c|c|c|c|}
\hline R49 & 49 & 99 & 180 & & \\
\hline R50 & 49 & 50 & 180 & & \\
\hline ISY & 99 & 50 & 0.0 & 813 & \\
\hline R61 & 60 & 99 & 73. & & \\
\hline R62 & 60 & 50 & 73. & & \\
\hline L61 & 60 & 52 & 1 e & & \\
\hline G63 & 63 & 50 & 113 & 60 & 0.0136612 \\
\hline G64 & 64 & 50 & 60 & 113 & 0.0136612 \\
\hline G65 & 60 & 99 & 99 & 113 & 0.0136612 \\
\hline G66 & 50 & 60 & 113 & 50 & 0.0136612 \\
\hline V61 & 61 & 60 & 3.38 & 46 & \\
\hline V62 & 60 & 62 & 3.38 & 46 & \\
\hline D61 & 113 & 61 & DX & & \\
\hline D62 & 62 & 113 & DX & & \\
\hline D63 & 99 & 63 & DX & & \\
\hline D64 & 99 & 64 & DX & & \\
\hline D65 & 50 & 63 & DY & & \\
\hline D66 & 50 & 64 & DY & & \\
\hline * & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{* models and end}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{. MODEL QX NPN(IS=1e-015 BF=2076)} \\
\hline \multicolumn{2}{|l|}{.MODEL D} & \multicolumn{3}{|l|}{\[
D(I S=1 e-015)
\]} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{. MODEL DY}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(D(I S=1 e-015 \quad \mathrm{BV}=50)\)}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Build Strategy Demonstrated}
- Sort (by magnitude) poles and zeros in four bins:
- Real poles (lowest may be in early stage of operational amplifier)
- Complex-conjugate poles
- Real zeros
- Complex-conjugate zeros
- Model complex-conjugate RHP zeros by all-pass network 14 or real RHP zeros by 13 and then in priority order use \(9,8,7\), and 6
- Model real zeros in priority order 5, 4, and 2
- Model remaining poles by 3 and 1
- Apply pole/zero cancellation for any "new" or "fixed" poles or zeros

\section*{Frequency Plots from Laplace Transform}


ESS OL Gain vs FrequelN.



"SS" is small signal

\section*{Conclusion}
- SPICE macromodel generation strategy uses unity gain, cascaded RLC pole and zero stages
- Pole/zero cancellation is effective for adding RHP zeros
- Operational amplifier macromodel illustrates the process
- Process can be applied to any macromodel including those for high-speed applications```

