

Time-Domain Extraction and SPICE Macromodeling

Bob Ross, Teraspeed Labs, USA bob@teraspeedlabs.com

DesignCon IBIS Summit (after DesignCon 2022) Santa Clara, California and Virtual April 8, 2022

Previous Presentations

- "Time-Domain Macromodel Extraction" (briefly) <u>www.ibis.org/summits/may21/ross1.pdf</u>
 - Nomenclature and some mathematical identities
 - Duality (see presentation for details)
 - Key equation for steepest descent optimization
 - Laplace transform optimization flow for simultaneous numerator and denominator coefficients
 - Last column mathematics for a companion matrices (not shown here)
 - In place algorithms (mentioned)
 - Constraints

Previous Presentations (continued)

- "SPICE Macromodel Generation" <u>www.ibis.org/summits/may21/ross2.pdf</u>
 - Mostly included here
 - Main point is to illustrate a set of circuits (and their efficiencies) for generating poles and zeros
 - Pole/zero cancellation is illustrated
 - Cascaded circuits were common practice in operational amplifier data book/sheet models

TIME-DOMAIN EXTRACTION

- Goal Low-order Laplace transform network function from timedomain measurements (or simulations) as a ratio of polynomials in s
 - Noisy measurements
 - Uncoupled networks
 - Least squared error steepest descent algorithm
- Show some not so well-known mathematical identities
 - **Duality**
 - Last column mathematics for functions of companion matrices
 - In place algorithms
- Based on original correspondence 1969 1972 with Janez Valand (Yugoslavia/Croatia) and actual product implementation (1990's)
- Derivations and proofs not shown
 - Proofs based on power series expansions and companion matrix relationships

Special Notation - EquationsLaplace Transform
$$X(s) = \frac{a_{n-1}s^{n-1} + \dots + a_0}{s^n + b_{n-1}s^{n-1} + \dots + b_0}$$
,Differential Equation $x^n(t) + b_{n-1}x^{n-1}(t) + \dots + b_0x(t) = 0$
initial conditions, $x(0), \dots, x^{n-1}(0)$,Difference Equation $x_n(t) + d_{n-1}x_{n-1}(t) + \dots + d_0x_0(t) = 0$
initial conditions, $x_0(0), \dots, x_{n-1}(0)$,Z Transform $Z(z) = \frac{z(c_{n-1}z^{n-1} + \dots + d_0)}{z^n + d_{n-1}z^{n-1} + \dots + d_0}$.

Conversions and Responses

Diff	fere	nt	ial			Diff	ere	nc	e		
Equ	ati	on	S			Equ	ati	on	S		
x (†)	$= [x^{0}]$	(t), x	$t^1(t), \cdot$	\cdots, x^{n-1}	$[t]^{T}$,	z (†) =	$= [x_0($	$(t), x_1$	$(t), \cdot$	\cdots, x_{n-1}	$(t)]^T$
a =	[a _{n-1} ,	,a	₀] ^T ,			c =	[c _{n-1} .	$\cdot \cdot c_0$]	Т		
	[1	0		0	0]		[1	0		0	٢٥
B =	b_{n-1} .	1		0	0	D =	d_{n-1}	1	•••	0	0
)	;	;	•	:	:			:	••	-	:
	02 1	03 1		1	1		d_2	d_3	•••	1	1
		02		0 _{n-1}	1]		a_1	a_2		<i>a</i> _{<i>n</i>-1}	IJ
a =	Bx (0)					c = [)z (0)				

,

Recursive Taylor Series (Repeat b and c) a) Initialize: *i* = 1, ..., *n*-1 $x(0) = a_{n-1} \qquad x^{i}(0) = a_{n-1-i} - \sum_{j=0}^{i-1} b_{n-i-j} x^{j}(0)$ b) Extend: $i = n, \dots, p$ $x^{i}(t) = -\sum_{i=0}^{n-1} b_{i} x^{i-n-j}(t)$ c) Next time step: i = 0, ..., n-1 (Taylor series) $x^{i}(t+T) = \sum_{j=i}^{p} x^{j}(t) \frac{T^{j-i}}{(i-i)!}$

R. I. Ross, "Evaluating the Transient Response of a Network Function," Proc. IEEE, vol.55, pp. 615-616, May 1967

Differential Difference Eq'n Sensitivities Eq'n Sensitivities

$$\begin{split} \left[\frac{\partial x(t)}{\partial c_0}, \frac{\partial x(t)}{\partial c_1}, \dots, \frac{\partial x(t)}{\partial c_{n-1}} \right]^T &= \\ \left[\frac{\partial x(t)}{\partial c_0}, \frac{\partial x_1(t)}{\partial c_0}, \dots, \frac{\partial x_{n-1}(t)}{\partial c_0} \right]^T \\ \left[\frac{\partial x(t)}{\partial d_0}, \frac{\partial x(t)}{\partial d_1}, \dots, \frac{\partial x(t)}{\partial d_{n-1}} \right]^T &= \\ \left[\frac{\partial x(t)}{\partial d_0}, \frac{\partial x_1(t)}{\partial d_0}, \dots, \frac{\partial x_{n-1}(t)}{\partial d_0} \right]^T \\ x_j(t) &= x(t+jT), \ j = 0, \dots, n-1 \\ \frac{\partial x_i(t)}{\partial c_j \partial d_k} &= \frac{\partial x_{i+j+k}(t)}{\partial c_0 \partial d_0} \end{split}$$

Laplace Transform Extraction (T.S.)

Teraspeed Labs

12

Available Constraints

- Denominator degree (number of poles)
- Ideal step response (b₀=0.0)
- Numerator degree (number of zeros, where lower degree produces less leading edge ripple)
- Set t_s start value, DC offset (y₀)
- Minimum and maximum frequencies for log frequency domain plots
- Initial value
- Final value

Constraints (Oscilloscope Step and Impulse Response Extractions)

Constraints – Maximally Flat Envelope Delay Networks

Conclusions

- Early (1970's) algorithm outlined for physical measurement-based time-domain extraction
- Most calculations done in place to save memory
- Most calculations used last-column matrix mathematics
- Many subroutines worked in both the difference equation and differential equation domains
- Laplace transform formulation allowed practical constraints to be implemented
- Result was a Laplace transform polynomial ratio, N(s)/D(s), from a time-domain response

GENERATING SPICE MACROMODELS

- Preliminary material
- Macromodel references
- Networks for poles and zeros (and their efficiencies)
- Operational amplifier open-loop response
- Operational amplifier macromodel example
- Conclusion

Automatic Implementation

- Starting point Laplace transform H(s) = N(s)/D(s) as ratio of polynomials is s
- Laplace transform, pole/zero, or pole/residue formats
 not interchangeable between EDA tools
- Lowest common denominator Berkeley SPICE RLC elements and controlled gain elements
- Implementation based on solving for poles and zeros and then cascading unit gain stages with efficient grouping.
- Automatic node numbering
- Stages referenced to one megohm (M Ω) resistor

SPICE Macromodels

- G. Boyle, B. Cohn, D. Pederson, J. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, Dec. 1974, pp. 353-363
 - Dominant and second real pole
 - A commercial vendor macromodel adapted to illustrate a general behavioral macromodel generation strategy
 - Strategy can be applied to high-speed networks
- Cascaded SPICE elements are common practice from several vendors, but some macromodels use:
 - Real left-hand plane (LHP) poles and zeros
 - No right-hand plane (RHP) zeros
 - No complex poles or zeros
 - Extractions often based on frequency domain magnitude and phase measurements

Networks

- Basic Stages (simple poles and zeros or combinations)
- Constructed Stages (combining several basic networks for an overall set of poles and zeros
- Utility Networks for pole/zero cancelation
- All-pass Networks for cancellations
- Efficiencies relative to a single-pole stage (combined P+Z stages usually more efficient)
 - Parts per pole+zero relative to 3.0
 - Nodes per pole+zero relative to 1.0

Basic Stages

BASIC STAGES:

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P + Z	Nodes Per P + Z
---------------	------------------------	---------------	------------------------	-----------------	--------	-------	--------------	-----------------------	-----------------------

1. Real Pole

				1		
x	1	1	3	1	3	1

2. Real Pole, Real Zero

2a. z < p	2b. z > p)					
o	x	2	a, b: 1	4	2	2	1

3. Complex-Conjugate Poles

	X						
		2	1	4	2	2	1
 × 0	X						

4. Complex-Conjugate Poles, Real Zero

4a. z < 2σ	4b. $z > (\omega^2 + \sigma^2) / 2\sigma$					
0	X	a: 1	5	2	1.67	0.67
	x	b: 1	5	3	1.67	1

Basic Stages

BASIC STAGES:

Basic Stages (Continued)

$$= \frac{R (1 + s / z)}{(1 + 2\sigma s / (\omega^{2} + \sigma^{2}) + s^{2} / (\omega^{2} + \sigma^{2}))}$$

$$C = z / R (\omega^{2} + \sigma^{2})$$

$$R2 = 1 / C (2\sigma - z)$$

$$R1 = R R2 / (R2 - R)$$

$$L = R1 / z$$

 $\begin{array}{l} C = (2\sigma \; / \; (\omega^2 + \sigma^2) \; - \; 1 \; / \; z) \; / \; R \\ R1 = \; 1 \; / \; C \; z \\ L = \; 1 \; / \; C \; (\omega^2 + \sigma^2) \end{array}$

Constructed Stages

CONSTRUCTED STAGES:

Real Zeros	Cmplx Conj Zeros	Real Poles	Cmplx Conj Poles	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per P + Z	Nodes Per P + Z
---------------	------------------------	---------------	------------------------	-----------------	--------	-------	--------------	-----------------------	-----------------------

4. Complex-Conjugate Poles, Real Zero (10 & 2)

4c. $(\omega^2 + \sigma^2) / 2\sigma > z > 2\sigma$

0	x	3	c: 2	8	4	2.67	1 33
Ŭ	x	5	0. 2	ľ	4	2.07	1.55

5. Complex-Conjugate Poles, Two Real Zeros (11 & 2)

	X						
00		4	2	9	5	2.25	1.25
	X		max: 3	13	7	3.25	1.75

6. Complex-Conjugate Poles, Complex-Conjugate Zeros (11, 12 & 2)

0	X						
		4	3	14	7	3.5	1.75
0	X						

7. Two Real Poles, Complex-Conjugate Zeros (12 & 2)

C)							
	X	X	4	2	9	4	2.25	1
C)			max: 3	13	6	3.25	1.5

8. Complex-Conjugate Poles, Real Pole, Complex-Conjugate Zeros (12 & 4)

0		X		min: 2	10	5	2	1
	X		5	2	10	6	2	1.2
0		X		max: 4	17	8	3.4	1.6

9. Complex-Conjugate Poles Real Pole, Complex-Conjugate Zeros, Real Zero (11, 12 & 2)

9. Compi	ex-conju	gale Pole	s near r	ole, com	plex-con	Juyale Le	ios, neai	Zero (11,	$12 \alpha 2)$
0	0	x	X	6	3	14	7	2.33	1.14
-	0		x	•	max: 5	22	11	3.67	1.83

Utility Networks and Combinations for Construction

UTILITY NETWORKS AND COMBINATIONS FOR CONSTRUCTION:

Real Zeros	Cmplx Conj	Real Poles	Cmplx Conj	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per	Nodes Per
	Zeros		Poles					P+Z	P+Z

10. Complex-Conjugate Poles, Fixed Real Zero

	X						
0		3	1	4	2	1.33	0.67
^ fixed	X						

11. Complex-Conjugate Poles, Real Zero, Fixed Real Zero

11a. $z < 2\sigma$ 11b. $z > (\omega^2 + \sigma^2) / 2\sigma$ 11c. $(\omega^2 + \sigma^2) / 2\sigma > z > 2\sigma$ (by combination of 11a & 2)

	X		a: 1	5	3	1.25	0.75
00		4	b: 1	5	3	1.25	0.75
^or^ fix	X		c: 2	9	5	2.25	1.25

12. Complex-Conjugate Zeros, Real Pole, Fixed Real Pole

12a. p < 2 σ 12b. p > ($\omega^2 + \sigma^2$) / 2 σ 12c. ($\omega^2 + \sigma^2$) / 2 σ > p > 2 σ (by combination of 12a & 2)

0			a: 1	5	2	1.25	0.5
	XX	4	b: 1	5	2	1.25	0.5
0	^or^ fix		c: 2	9	4	2.25	1

Utility Networks for Construction

UTILITY NETWORKS FOR CONSTRUCTION:

10. Complex-Conjugate Poles, Fixed Real Zero

$$\frac{V}{I} = \frac{R (1 + s / z)}{(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}$$
$$L = R / 2\sigma$$
$$C = 1 / L (\omega^2 + \sigma^2)$$

Utility Networks (Continued)

11. Complex-Conjugate Poles, Real Zero, **Fixed Real Zero**

11a. $(z1 < 2\sigma)$

1

12. Complex-Conjugate Zeros, Real Pole 12a. $(p1 < 2\sigma)$

 $\frac{R (1 + s / z1) (1 + s / z2)}{(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}$ <u>V</u> = L = R / z1 $C = 1 / L (\omega^2 + \sigma^2)$ $R1 = R / (2\sigma / z1 - 1)$ $z_2 = 1 / R_1 C$
$$\begin{split} & C = (2\sigma \ / \ (\omega^2 + \sigma^2) \ - \ 1 \ / \ z1) \ / \ R \\ & R1 = 1 \ / \ C \ z1 \\ & L = 1 \ / \ C \ (\omega^2 + \sigma^2) \end{split}$$

$$\underline{V} = \frac{R (1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2))}{(1 + s / p_1) (1 + s / p_2)} C = 1 / R p_1 L = 1 / C (\omega^2 + \sigma^2) R_1 = R / (2\sigma / p_1 - 1) p_2 = R_1 / L C = 1 / L (\omega^2 + \sigma^2) L = R (2\sigma / (\omega^2 + \sigma^2) - 1 / p_1) R_1 = L / p_1 p_2 = 1/RC$$

All-Pass Networks (Mirrored P/Z)

ALL-PASS NETWORKS FOR RIGHT-HAND PLANE ZEROS (WITH MIRRORED POLES):

= <u>R (1 - s / z)</u> (1 + s / z)

> L = R / z C = 1 / R²

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

 $\frac{V}{I} = \frac{R \left(1 - 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2)\right)}{\left(1 + 2\sigma s / (\omega^2 + \sigma^2) + s^2 / (\omega^2 + \sigma^2)\right)}$

C1 = 1 / 2R σ L1 = 1 / C1 ($\omega^2 + \sigma^2$) L2 = R² C1 C2 = 1 / L2 ($\omega^2 + \sigma^2$)

ALL-PASS NETWORKS FOR RIGHT HAND PLANE ZEROS (WITH MIRRORED POLES):

Real Zeros	Cmplx Conj	Real Poles	Cmplx Conj	Poles+ Zeros	Stages	Parts	New Nodes	Parts Per	Nodes Per
	Zeros		Poles					P + Z	P + Z

13. RHP Real Zero, Fixed Real Pole

RHP O X 2 1 6 3 3 1.5 ^ fixed 2 1 6 3 3 1.5	RHP O	X ^ fixed	2	1	6	3	3	1.5
---	-------	--------------	---	---	---	---	---	-----

14. RHP Complex-Conjugate Zeros, Fixed Complex-Conjugate Poles

	1		
	1		
4 1 10	5	2.5	1.25
RHP O X fixed			

Open Loop (OL) AC Model from Closed Loop (CL) Response

Extracted H(s) = Vout/Vin from time response = N(s)/D(s)

 $G = (R_1 + R_2)/R_1$

H(s) = A(s)/[1 + A(s)/G]

A(s) = H(s) + H(s)A(s)/GA(s) = H(s)/[1 - H(s)/G]

 $\begin{array}{l} A(s) = [N(s)/D(s)]/[1 - N(s)/GD(s)] \\ A(s) = N(s)/[D(s) - N(s)/G] \end{array}$

Poles and zeros of A(s) produces OL AC Model

Operational Amplifier AC Model Example

Generated	
SPICE Macromodel	<pre>* SETUP PARAMETERS * NPN Bipolar Junction Transistor Input * Vcc = 15 V, Vee = -15 V * Input Stage Tail Current = 0.1 mA * * MEASURED (OR USER OVERRIDDEN) PARAMETERS</pre>
AC Model \checkmark AC Model \checkmark AC Model \checkmark AC Model Zeros=3 Z1=-1.41e+007 + j 0 Z2=+3.93e+008 - j3.44e+008 Z3=+3.93e+008 + j3.44e+008 Poles=5 P1=-4.29e+008 + j 0 P2=-1.75e+008 - j3.72e+008 P3=-1.75e+008 + j3.72e+008 P4=-1.44e+007 + j 0 P5=-8.99e+003 + j 0	<pre>* Srp = 135.3 V/us, Srn = 135.3 V/us Avd = 94.211 dB at RL(Load) = 1e+009 kOhms f(0dB) = 71.8 MHz, Phi(Phase Margin) = 222.2 deg ZEROS Radians Real Imaginary -1.41e+007 0 3.93e+008 -3.44e+008 3.93e+008 3.44e+008 POLES Radians Real Imaginary -8990 0 -1.44e+007 0 -1.75e+008 -3.72e+008 -1.75e+008 3.72e+008 -4.29e+008 0 NON-INVERTING INPUT INVERTING INPUT INVERTING INPUT POSITIVE POWER SUPPLY POSITIVE POWER SUPPLY</pre>
<section-header></section-header>	<pre>*</pre>

Teraspeed Labs

•31

Low Frequency Pole

EREF	98	0	49	0	1			**** *	****	****	CONS	TRUCT	ED ST	AGE *	****	*****	*****
* SEC	DNC	STAGE	POLE	AT	1430	.8 HZ]	* LHP * LHP	REAL COMP	ZERO	D AT 2 ZEROS	.2440 AT 62	8 MHZ	+/-	j 54	.7493	MHZ
R21 C21 G21 V22 D21 D22 * * RHP * NEW	100 100 99 22 100 22 COM	98 98 21 50 21 100 PLEX 2 CCMPI	1.50 7.39 6 2.39 2.41 DX DX DX EROS	0501 9098 5 9393 1393 1393 AT OLES	62.5	3 .0003 479 + 52.54	41195 /- j 54.7493 MHZ 79 +/- j 54.7493 MHZ	* LHP * LHP * LHP * NEW * LHP * R106 R107 C106 L106	REAL COMP ZERC LHP COMP 108 108 107	DEX 1 2ERO 2ERO 106 107 98 98	E AT 2 POLES 2.2440 AT 80 POLES 1e+0 2.38 8.34 0.07	AT 27 AT 27 AT 27 AT 27 AT 27 06 227e+ 275e- 0922	3 MHZ .8521 MHZ .8521 007 017	+/-	j 59. j 59.	.2056	MHZ MHZ
*								G106	108	98	49	105	1e-00	06			
k101 C101 C102 C103 C104 L101 L102 L103 L104 G101	105 101 105 105 104 101 105 101 102 102	98 98 102 103 98 98 102 103 104 101	1e+(1.2 2.88 2.88 0.00 0.00 0.00 49	006 7226 8139 8139 0288 0288 0288 0127 0127 10	e-01 e-01 e-01 139 139 226 226 0 1	5 5 5 5 5		* LHP * LHP * NEW * R109 R110 C109 L109 G109 * * * LHP * LHP	COMP POLE LHP 110 109 110 109 110 ZERO POLE	LEX : AT : POLE 109 98 98 98 98 98 98 AT :	ZEROS 2.2918 AT 56 1e+0 1866 6.94 5.27 49 56.266 30.079	AT 62 3 MHZ .2663 06 2.5 444e- 888e- 108 3 MHZ 2 MHZ	.5479 MHZ 014 005 1e-00	+/-	j54,	.7493	MHZ
							MHz	*									
						Real	Imaginary	R111	112	111	1e+0	06					

R112 111 98

L111 111 98

G111 112 98

	MHZ
Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493

110 le-006

423218

49

0.000841133

<u>N-X</u>
Teraspeed Labs

	MHz	
Real		Tmaginary
-0.0014308		0
-2.29183		0
-27.8521		-59.2056
-27.8521		59.2056
-68.2775		0

3 Poles, 3 Zeros using Cancellations

EREF	98	0	49	0	1				_	*****	*****	****	CONST	rructi	ED STAC	GE ****	****	******	
* SEC(*	OND S	TAGE	POLE A	AT 14	30.8	HZ		(9)	→	* LHP * LHP * LHP	REAL COMPI	ZERO LEX Z POLE	AT 2. EROS A	24408 AT 62.	B MHZ 5479 H B MHZ	+/- j 5∙	4.749	3 MHZ	
R21	100	98	1.505	501e4	-008					* LHP	COMP	LEX P	OLES A	AT 27.	8521 4	-/- i 5	9.205	6 MHZ	
G21 V21 V22 D21 D22	100 99 22 100 22	98 21 50 21 100	6 2.393 2.413 DX DX	5 193 193	0.0	0003411	°⁵ Cancel	lation		* LHP * NEW * LHP * R106	ZERO LHP : COMPI	AT 2 ZERO LEX P 106	.24408 AT 80. OLES A 1e+00	8 MHZ 0792 AT 27.	MHZ .8521 4	(11 -/- j 59) 9.205	6 MHZ	1
* RHP * NEW	COMP LHP	LEX Z	EROS A EX POL	T 62 Les A	2.547 T 62	9 +/- .5479	j 54.7493 M +/- j 54.74	HZ 93 MHZ	Ł	C106 L106 G106	108 107 106	107 98 98 98	2.382 8.342 0.070 49	27e+0 275e-0 922 105	007 017	c.			
R101 C101 C102 C103 C104	105 101 105 105 104	98 98 102 103 98	1e+00 1.272 1.272 2.881 2.881)6 226e- 226e- 139e- 139e-	-015 -015 -015 -015			(14)		* * LHP * LHP * NEW * R109	COMPI POLE LHP	LEX Z AT 2 POLE	EROS A .29183 AT 56.	AT 62. 8 MHZ 2663	.5479 H MHZ	-/- j ₅/ (12	4.749 2)	93 MHZ	
L101 L102 L103 L104 G101	101 105 101 102 102	98 102 103 104 101	0.002 0.002 0.001 0.001 49	28813 28813 2722 2722 100	9 9 6 26 1e-	006				R110 C109 L109 G109 *	109 110 109 110	98 109 98 98	18662 6.944 5.278 49	2.5 44e-0 88e-0 108	014 005 1e-006	5			
-							MHz			* LHP * R111	POLE	AT 8	0.0792 1e+00	MHZ		(2)			Hions
												~ ~						antelle	auviis

R112 111 98

L111 111 98

G111 112 98

	MHZ
Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493

110 le-006

423218

49

0.000841133

M	Hz
Real	Imaginary
-0.0014308	0
-2.29183	0
-27.8521	-59.2056
-27.8521	59.2056
-68.2775	0

Last Pole and Last Stages

	MHZ
Real	Imaginary
-2.24408	0
62.5479	-54.7493
62.5479	54.7493
	MHz
Real	Imaginary
-0.0014308	0
-2.29183	0
-27.8521	-59.2056
-27.8521	59,2056
-68.2775	0

(1) * LHP POLE AT 68.2775 MHZ R113 113 98 1e+006 C113 113 98 2.331e-015 113 98 G113 112 1e-006 49 * COMMON MODE GAIN STAGE WITH ZERO AT 20 KHZ * R57 59 57 1e+006 C57 59 57 7.95775e-012 R58 59 98 1

49

3

3.55745

~ 001	LOT C	INGE					
*							
R49	49	99	1800	5			
R50	49	50	1800	5			
ISY	99	50	0.00	58135			
R61	60	99	73.2				
R62	60	50	73.2				
L61	60	52	1e-0	12			
G63	63	50	113	60	0.0136612		
G64	64	50	60	113	0.0136612		
G65	60	99	99	113	0.0136612		
G66	50	60	113	50	0.0136612		
V61	61	60	3.38	846			
V62	60	62	3.38	846			
D61	113	61	DX				
D62	62 ·	113	DX				
D63	99	63	DX				
D64	99	64	DX				
D65	50	63	DY				
D66	50	64	DY				
* MODELS AND END							
*							
.MODEL QX NPN(IS=1e-015 BF=2076)							
.MODEL DX D(IS=1e-015)							
.MODEL DY D(IS=1e-015 BV=50)							

+ OTITOTIT CONCE

.ENDS

E57

57

98

Build Strategy Demonstrated

- Sort (by magnitude) poles and zeros in four bins:
 - Real poles (lowest may be in early stage of operational amplifier)
 - Complex-conjugate poles
 - Real zeros
 - Complex-conjugate zeros
- Model complex-conjugate RHP zeros by all-pass network 14 or real RHP zeros by 13 and then in priority order use 9, 8, 7, and 6
- Model real zeros in priority order 5, 4, and 2
- Model remaining poles by 3 and 1
- Apply pole/zero cancellation for any "new" or "fixed" poles or zeros

Frequency Plots from Laplace Transform

"SS" is small signal

Conclusion

- SPICE macromodel generation strategy uses unity gain, cascaded RLC pole and zero stages
- Pole/zero cancellation is effective for adding RHP zeros
- Operational amplifier macromodel illustrates the process
- Process can be applied to any macromodel including those for high-speed applications

