

IBIS Based Behavior Modeling for Current Mode Buck Converter

Anfeng Huang, Jingdong Sun, Hongseok Kim, Jun Fan, Chulsoon Hwang

Missouri S&T EMC Laboratory

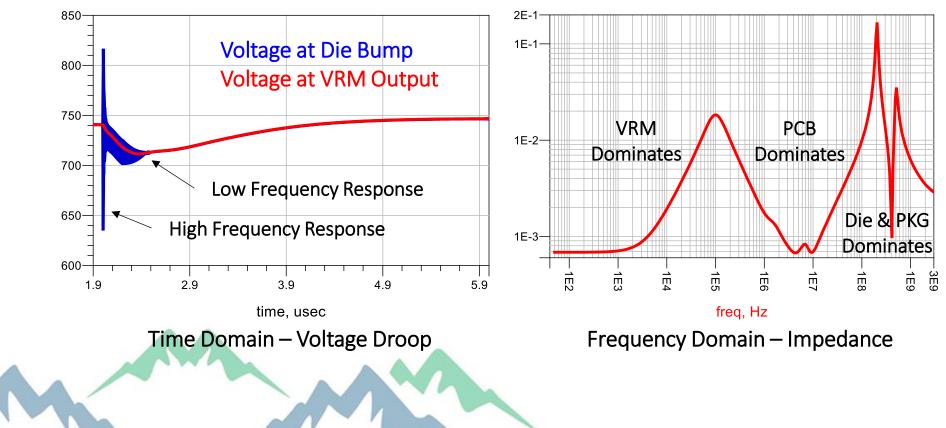
Zhiping Yang, Yimajing Yan, Hanfeng Wang, Songping Wu, Shuai Jin, Zhenxue Xu

IBIS Summit at 2020 IEEE Virtual Symposium on EMC+SIPI August 28, 2020

Objective

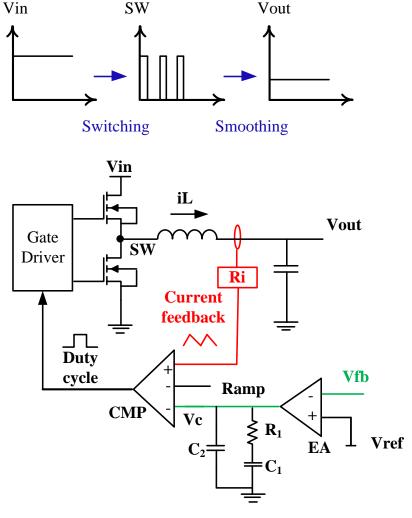
- System-Level Power simulation Coverage
 - **DC simulations**, including IR drop;
 - Transient response, i.e. transient power noise;
 - AC simulations, i.e. PDN impedance;
 - System power consumption and efficiency;
 - Power/thermal co-simulation

Outline


- Background
 - Influence of voltage regulator module (VRM) on the power distribution network (PDN) design.
 - Introduction to current mode buck converter
- Proposed IBIS Model for Current Mode Buck Converter
- Validation
- Conclusion and future work
- Acknowledgement

Time / Frequency Domains Comparison

- VR model is required to capture the low frequency response during switching.
- The SI related performances e.g. eye-diagram could not be accurately simulated if the power line noise is neglected.



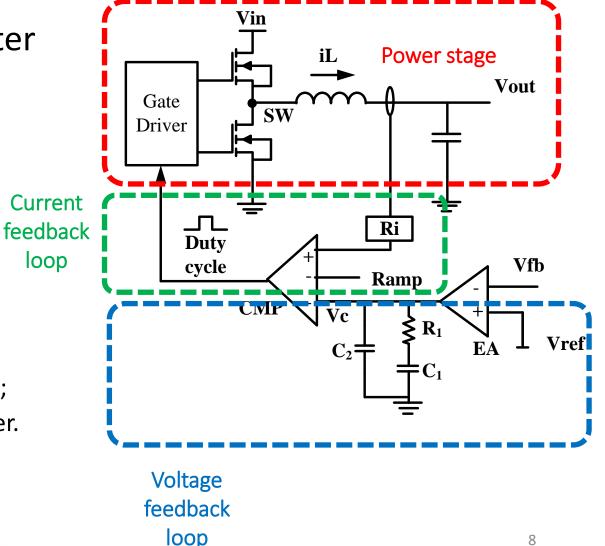
Introduction to Current Mode Buck Converter

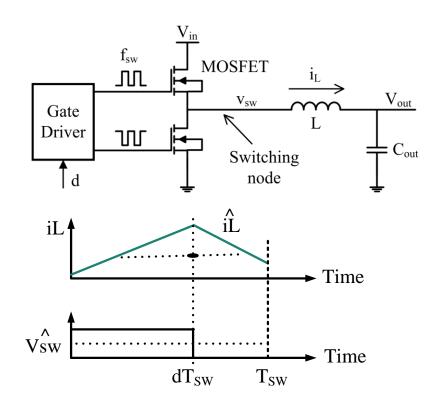
- Current mode buck converter
 - Current information is used in feedback controller.
- Influence of feedback control loop
 - Steady state output variance under different input and loading conditions;
 - Voltage droop and recovery time.
- Method of control
 - PWM (Pulse width modulation) control;
 - PFM (Pulse frequency modulation) control.

Outline

- Background
- Proposed IBIS Model for Current Mode Buck Converter
 - Modeling Method
 - Summary of key parameters and equations in proposed model
 - Discussion
- Validation
- Future work

Existing Modeling Method and Proposal


- Existing modeling method:
 - VRM device model directly provided by the vendor, typically encrypted because of the IP concerns;
 - Limitations:
 - Not compatible with IBIS simulator;
 - Simulation speed and convergence concerns exist due to switching nature.
- Proposal:
 - Equation based averaged model with same behavior;
 - Advantages:
 - Equivalent transfer function other than exact circuit implementation is provided in the model (naturally encrypted);
 - Much faster than ordinary model with switching behavior.



Modeling Methodology for Buck Converter

- Analytical equation for power converter
 - Focusing on the averaged behavior;
 - PWM control buck is used for demonstration.
- Sub-circuit blocks
 - Power Stage
 - Current feedback Loop
 - Only continuous current mode is supported;
 - Need modification to support PFM controller.
 - Voltage feedback Loop

Power Stage

$$\hat{V_{SW}} = d(V_{in} - r_{on,H}\hat{i_L}) - (1 - d)r_{on,L}\hat{i_L}$$

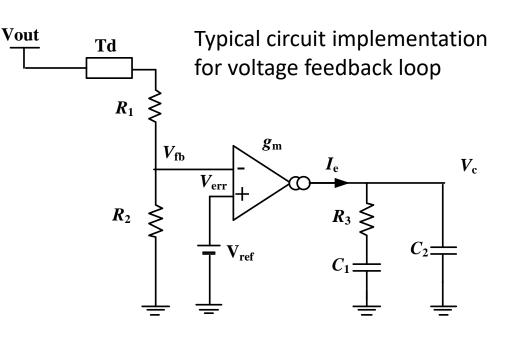
$$V_{out} = V_{SW} - r_L \hat{i_L}$$

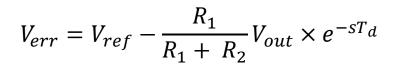
- Parameters definition •
 - $\hat{i_L}$: averaged inductor current.
 - *f_{SW}*: switching frequency
 - *d*: the duty cycle.
 - V_{SW} :averaged voltage on switching node.
 - r_L, L : ESR and inductance of inductor.
 - *C_{out}*: capacitance of capacitor.
 - $r_{on,H}$, $r_{on,L}$: On resistance of high and low side MOSFETs.
 - V_{in}: Input Voltage.

Note :

Key parameters of proposed IBIS model are marked in red;

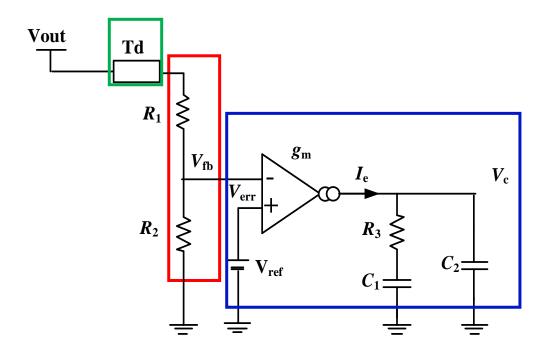
Only consider the loss caused by on resistance of MOSFETs and inductor. Loss of capacitor is relatively small and could be neglected.


Voltage Feedback Loop



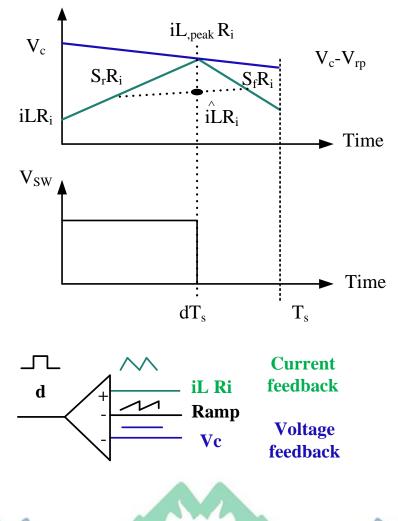
- Parameters definition in typical circuit implementation
 - V_{fb} : feedback voltage calculated from V_{out} .
 - *V_{ref}*: internal reference voltage.
 - g_m : transconductance of error amplifier.
 - R_1, R_2 : Resistive divider network.
 - $R_3, C_1, C_2, :$ compensation circuits.
 - V_c : compensated voltage from error amplifier.
 - T_d : control delay due to remote sensing

The transfer function of the voltage feedback circuit could be calculated as:



$$\frac{V_c}{V_{err}} = -g_m \times \frac{1 + R_3 C_1 s}{(C_1 + C_2)s + R_3 C_2 C_1 s^2}$$

Voltage Control Loop – Transfer Function


Different types of compensators are supported by specifying multiple zeros and poles.

- Parameters definition in proposed IBIS model
 - T_d : control delay due to remote sensing.
 - *V_{ref}*: internal reference voltage.
 - K_{div} : dividing ratio of resistive network.
 - K_{dc} : dc gain of error amplifier.
 - ω_{zn} : frequency of nth zero.
 - ω_{pn} : frequency of nth pole.

$$V_{err} = V_{ref} - V_{out} \times K_{div} \times e^{-sT_d}$$

$$\frac{V_c}{V_{err}} = -K_{dc} \times \frac{s - \omega_z}{(s - \omega_{p1})(s - \omega_{p2})}$$

Current Feedback Loop (CCM)

- Parameters Definition
 - $\hat{i_L}$: averaged inductor current.
 - R_i : total current sensing gain.
 - V_{rp} : ramp voltage for compensation.
 - S_r , S_f : rising and falling slopes of i_L .
 - T_s : switching period time.
 - d: the duty cycle.

$$\begin{split} S_{\rm r} &= \frac{V_{\rm in} - \hat{i_{\rm L}}(r_{\rm on,H} + r_{\rm L}) - V_{\rm out}}{L}, \\ S_{\rm f} &= \frac{-\hat{i_{\rm L}}(r_{\rm on,L} + r_{\rm L}) - V_{\rm out}}{L}, \end{split} \qquad \Delta S \triangleq S_{\rm r} - S_{\rm f}, \\ 1 &= V_{\rm ev} = \sqrt{1 - V_{\rm out}}, \end{split}$$

$$d = \frac{1}{2} + \frac{V_{rp}}{T_s \Delta SR_i} - \sqrt{(\frac{1}{2} + \frac{V_{rp}}{T_s \Delta SR_i}) - \frac{2}{T_s \Delta S}(\frac{V_c}{R_i} - \hat{i_L})}$$

Note : Key parameters of proposed IBIS model are marked in red;

Discussion

- The proposal is valid only for current mode buck converter
 - The structure of control circuit should be known to build the average model;
 - The proposal could be extended to support other controllers.
- Only PWM controller is discussed, but the model could be easily modified for PFM controller.
 - Substitute $d = \frac{T_{on}}{T_{sw}}$ into previous equations;
 - The equations for PFM controller could be found in backup slides.

Summary of Key Parameters

Device physical parameters (from vendor)

Type of controller:

• PWM or PFM

Power stage:

• On resistance of high and low side MOEFETs: $r_{on,H}$, $r_{on,L}$

Voltage feedback loop:

- Internal reference voltage: *V_{ref}*
- DC gain of error amplifier : K_{dc}
- Frequency of n^{th} zero : ω_{zn}
- Frequency of nth pole: ω_{pn}

Current feedback loop:

- total current sensing gain : R_i
- ramp voltage for compensation : V_{rp}

System controlled parameters (from designer)

- Input voltage : V_{in}
- Output current profile: *I*_{Load}
- Switching frequency : f_{SW}
- control delay due to remote sensing: T_d

Optional parameters (from vendor or designer)

- Dividing ratio of resistive network: *K*_{div}
- Output inductance: *L*
- ESR of output inductor: r_L
- Output capacitor: *C*out

Summary of Equations

Power stage

$$\hat{V_{SW}} = d(V_{in} - r_{on,H}\hat{i_L}) - (1 - d)r_{on,L}\hat{i_L}$$
$$V_{out} = \hat{V_{SW}} - r_L\hat{i_L}$$

Voltage feedback loop

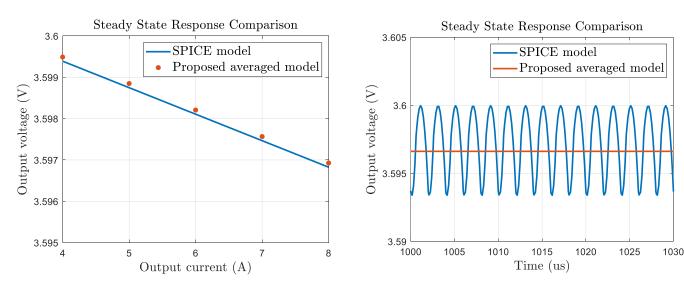
$$V_{err} = V_{ref} - V_{out} \times K_{div} \times e^{-sT_d}$$
$$\frac{V_c}{V_{err}} = -K_{dc} \times \frac{s - \omega_z}{(s - \omega_{p1})(s - \omega_{p2})}$$

Current feedback loop

$$\begin{split} S_{\rm r} &= \frac{V_{\rm in} - \hat{i_{\rm L}}(r_{\rm on,H} + r_{\rm L}) - V_{\rm out}}{L}, \\ S_{\rm f} &= \frac{-\hat{i_{\rm L}}(r_{\rm on,L} + r_{\rm L}) - V_{\rm out}}{L}, \end{split} \qquad \Delta S \triangleq S_{\rm r} - S_{\rm f}, \\ d &= \frac{1}{2} + \frac{V_{rp}}{T_s \Delta S R_i} - \sqrt{(\frac{1}{2} + \frac{V_{rp}}{T_s \Delta S R_i}) - \frac{2}{T_s \Delta S}(\frac{V_c}{R_i} - \hat{i_L})} \end{split}$$

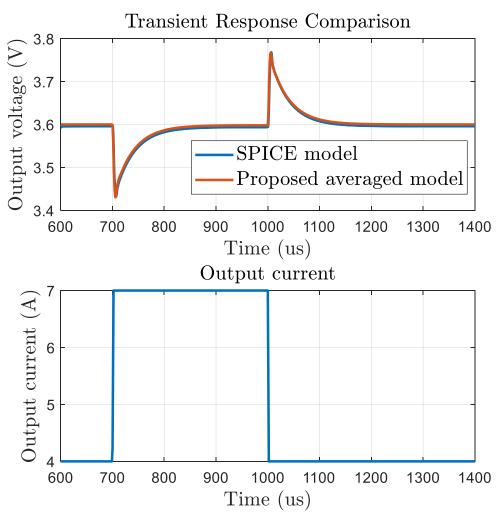
The current mode buck converter could be well-modeled with combination of equations and circuit elements (inductor and capacitors).

Outline



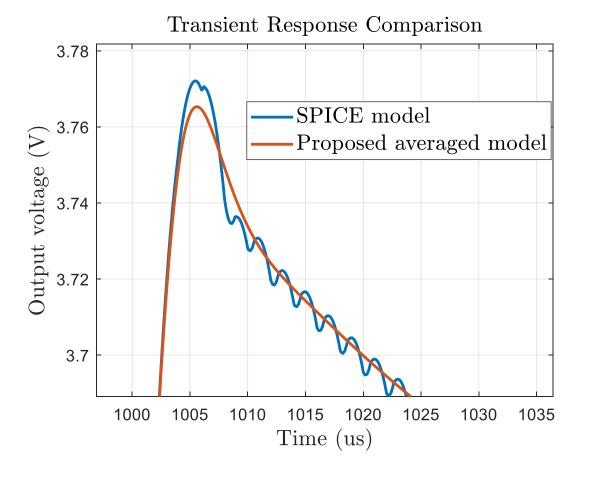
- Background
- Proposed IBIS Model for Current Mode Buck Converter
- Validation
- Future work

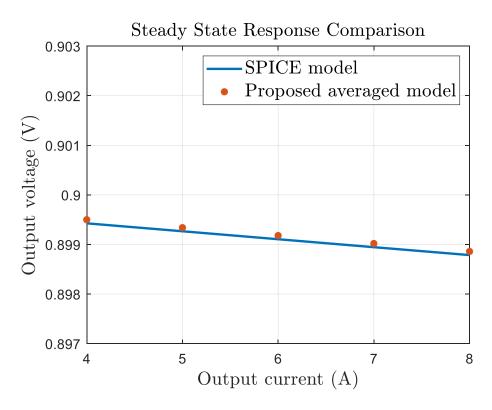
Example: Steady State Output Voltage (PWM)


- The simulation results are compared with results obtained from SPICE model with real switching behavior.
 - Left: averaged output voltage vs. output current;
 - Right: waveforms of output voltage (The proposed model is an averaged model).
- Good agreement is achieved.

Device Parameters		Value	System Parameters	Value
Control	Mode	PWM	V _{in}	12 V
Power stage	r _{on,H}	8.2 mohm	I _{Load}	4 A
	r _{on,L}	5.5 mohm	K _{div}	0.25
Voltage feedback loop	V _{ref}	0.9 V	f _{sw}	500 kHz
	K _{dc}	625	L	5 uH
	ω_{z1}	4.3 kHz	r_L	3 mOhm
	ω_{p1}	49.3 Hz	Cout	44 uF
	ω_{p2}	180 kHz	T_d	10 ns
Current feedback loop	R _i	0.1		
	V_{rp}	20 mV		

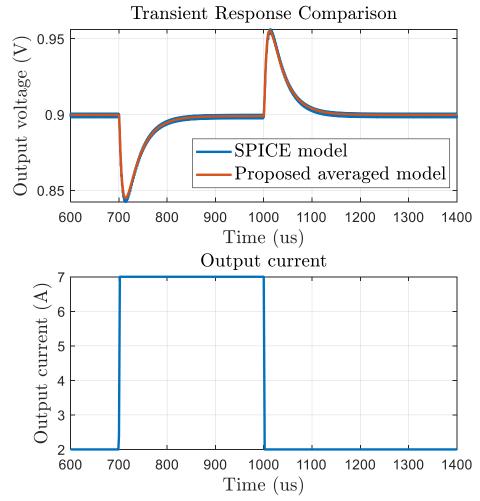
Example: Transient Output Voltage (PWM)


- The transient responses are also compared:
 - Rising edge: 4A->7A , rise time: 2us
 - Falling edge: 7A->4A, fall time: 2us
- The voltage drop generated during load transient could be accurately captured by the average model:
 - Rising edge: $\Delta V = 4.8$ mV
 - falling edge: $\Delta V = 4.3 \text{mV}$


Example: Transient Output Voltage (PWM)

- The zoomed in results are demonstrated for further explanation;
 - The rise time of output voltage is well matched.
- The relatively large difference is due ripples generated by switching.
 - Smaller voltage difference would be observed if the SPICE simulation results are filtered.

Example: Steady State Output Voltage (PFM)


• The simulation results are also well matched.

Device Parameters		Value	System Parameters	Value
Control	Mode	PFM	V _{in}	12 V
Power stage	r _{on,H}	10 mohm	I _{Load}	4 A
	r _{on,L}	10 mohm	K _{div}	1
Voltage feedback loop	V _{ref}	0.9 V	f _{sw}	400 kHz
	K _{dc}	625	L	800 nH
	ω_{z1}	4.3 kHz	r_L	1 mOhm
	ω_{p1}	49.3 Hz	Cout	440 uF
	ω_{p2}	180 kHz	T_d	15 ns
Current feedback loop	R _i	0.1		
	V_{rp}	30 mV		

Example: Transient Output Voltage (PFM)

- The transient responses are also compared:
 - Rising edge: 2A->7A , rise time: 2us
 - Falling edge: 7A->2A, fall time: 2us
- The voltage drop generated during load transient could be accurately captured by the average model:
 - Rising edge: $\Delta V = 3.4$ mV
 - falling edge: $\Delta V = 4.1 \text{mV}$

Simulation Speed Comparison

- One of the advantage of the proposed model is simulation speed.
 - Stop time: 2ms

Simulator	Features	Type of model	Maximum time step	Elapsed time
Simplis	Does not support S-	PWM (SPICE)	N/A	4 s
	parameters block and IBIS model	PFM (SPICE)	N/A	4 s
ADS		PWM(SPICE)	10 ns	21 s
	ADS presently supports	PFM(SPICE)	10 ns	45 s
	the IBIS 4.2 specification	PWM (Proposed)	10 ns	3.3 s
		PFM (Proposed)	10 ns	4.6 s

Conclusion and Future Work

- The waveforms of averaged model are well matched with SPICE model.
- The proposed model can be used to evaluate the steady state and transient response of buck converter.
- Future work
 - Discontinuous current mode operation;
 - AC simulations, i.e. PDN impedance
 - Include loss simulation capability (DC loss and switching loss)
 - Ref: IBIS based buck converter dc modeling (DesignCon IBIS Summit Santa Clara, California January 31, 2020)

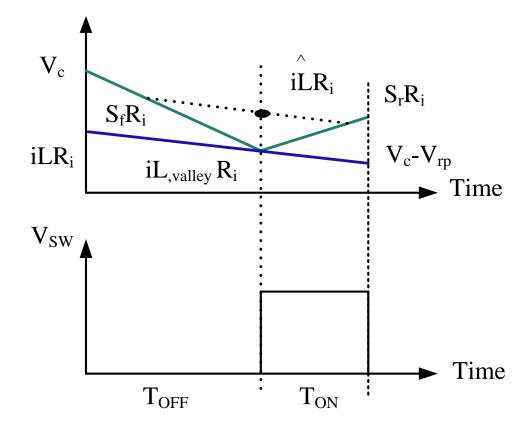
Acknowledgement

• The modeling for PWM based buck converter is originally published in follows:

Jingdong Sun, Yimajian Yan, Hanfeng Wang, Emil Chen, Ken Wu and Jun Fan. "Topology-based Accurate Modeling of Current-Mode Voltage Regulator Modules for Power Distribution Network Design.", under review.

The END

Backup



PFM Controller Vin **Current feedback** Ls iL Vout Gate SW Driver Driver Ri Ts Voltage ___ Duty Ri feedback Vfb cycle Ramp $\wedge \wedge$ EA Ton **CMP** Vc Л Vc **≶** R₁ Vref EA Vref C_2 = Comparator C_1 Ramp

- The current PFM controller has almost the same structure as PWM one;
- The current loop comparator has opposite polarity due to on generator is used;
 - Only the current feedback loop is different.

Equation for PFM Controller

• The switching period could be calculated according to the waveforms.

$$i_{L,valley} - \hat{i_L} + (1 - \frac{T_{ON}}{T_{sw}})T_{ON}(S_r - S_f) = 0$$

$$D_s = (S_r - S_f)$$

$$T_{sw} = \frac{T_{on}(D_s R_i T_{on} + 2V_{rp})}{\hat{-2i_L R_i} + D_s R_i T_{on} + 2V_c}$$