BIRD223:
Add Support for SPIM in IBIS
- approved by IBIS Open Forum on July 14, 2023

SPIM = Streamlined Power Integrity Model

Kinger Cai, Chi-te Chen
August 2023
Kinger Cai, Principal Engineer
Platform Electrical Architect, CCG, Intel Corp.
Kinger.Cai@intel.com

Executive Summary

Background:
- OEM/ODMs desire to design Time-To-Market innovative products effectively
- Platform PI design without standard model significantly lags SI design with IBIS
- SPIM expedites platform PI design while protecting chip vendor’s IP

Timeline:
- PKG PI model was introduced upon FastPI PI architecture in 2018
- SPIM upon FastPI architecture got support with 3 EDA vendors in 2021
- SPIM draft initial version was brought up in IBIS ATM Group in 2022
- BIRD223, Add support for SPIM in IBIS, was submitted in March 2023
- BIRD223 got approved in IBIS Open Forum on July 14, 2023

Other names and brands may be claimed as the property of others. All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Platform PI Design: SPIM- Streamlined PI Model

Well taken care of in PKG & Silicon PDN design, by chip vendors, through SPIM, and CVRM auto-calculation built in FastPI.

SPIM:
- S parameter
- Rnetwork (DC)
- Weighted source
- Defined target
- Pin awareness

Platform Level PI Design

IEEE Paper: *Scalable Platform Power Integrity Design Approach with Standard PI Model (SPIM) and Unified PI Target (UPIT)*

Xingjian Kinger Cai; Yun Ling; Steven Yun Ji; Jimmy Hsiao; Chi-te Chen; Denis Chen, page 64-66, 14-18 May 2018

• SPIM: Streamlined PI Model, for each power rail in a SoC/PKG, or a module.
Platform PI Design: Stimulus & Target Definition

\[[S_{pdn}] \rightarrow [Z_{pdn}] \]

\[[V] = [Z_{pdn}][I] \]

\[[V] = [v_1, v_2, \ldots, v_N, v_{S1}, v_{S2}, \ldots, v_{SM}]^T \]

\[[I] = [w_1, w_2, \ldots, w_N, 0, 0, \ldots, 0]^T \]

\[\sum_{i=1}^{i=N} w_i = 1 \]

\[Z_{s_i} = v_s = \sum_{i=1}^{i=N+M} (Z_{pdn}(N + j), i * W_i), \quad j \in \{1: M\} \]

\[Z_{s_i} = \sum_{i=1}^{i=N} (Z_{pdn}(N + j), i * W_i), \quad j \in \{1: M\} \]

IEEE paper: VRM Modeling for Platform FastPI upon SPIM

2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium

Xingjian Kinger Cai; Wei Qian; Chi-te Chen; etc., page 162, August 2021

Impedance target is generally defined at the observing Port_ j.
Tree Structure of .spim FILE

```
.spim FILE
-------------
|-- File Header Section
|  -------------
|  |-- [IBIS Ver]
|  |-- [Comment Char]
|  |-- [File Name]
|  |-- [File Rev]
|  |-- [Date]
|  |-- [Source]
|  |-- [Notes]
|  |-- [Disclaimer]
|  |-- [Copyright]
|-- [Device_SPIM]
|  -------------
|  |-- [Manufacturer]
|  |-- [Description]
|-- [SPIM Rail]
|  -------------
|  |-- [SPIM Pin Cluster]
|  |  -------------
|  |  |-- [End SPIM Pin Cluster]
|  |  |  |-- [End SPIM Rail]
|  |  |-- [SPIM Port List]
|  |  |  |-- [End SPIM Port List]
|  |  |  |  |-- [End Device SPIM]
|  |  |  |  |  |-- [End]
|-- [SPIM Touchstone File]
|  -------------
|  |-- [SPIM Stimulus]
|  |  -------------
|  |  |-- [End SPIM Stimulus]
|  |  |-- [SPIM Target]
|  |  |  -------------
|  |  |  |-- [End SPIM Target]
|  |  |-- [SPIM Observation Port]
|  |  |  |-- [End SPIM Observation Port]
|  |  |-- [SPIM Touchstone File]
|  |  |  |-- [End SPIM Touchstone File]
|-- [SPIM Rnetwork File]
|  -------------
|  |-- [SPIM Current]
|  |  -------------
|  |  |-- [End SPIM Current]
|  |  |-- [SPIM Voltage List]
|  |  |  -------------
|  |  |  |-- [End SPIM Voltage List]
|  |  |-- [SPIM Rnetwork File]
|  |  |  |-- [End SPIM Rnetwork File]
|-- [SPIM Stimulus]
|  -------------
|  |-- [End SPIM Stimulus]
|-- [SPIM Target]
|  -------------
|  |-- [End SPIM Target]
|-- [SPIM Observation Port]
|  -------------
|  |-- [End SPIM Observation Port]
|-- [SPIM Touchstone File]
|  -------------
|  |-- [End SPIM Touchstone File]
|-- [SPIM Rnetwork File]
|  -------------
|  |-- [SPIM Current]
|  |  -------------
|  |  |-- [End SPIM Current]
|  |  |-- [SPIM Voltage List]
|  |  |  -------------
|  |  |  |-- [End SPIM Voltage List]
|  |  |-- [SPIM Rnetwork File]
|  |  |  |-- [End SPIM Rnetwork File]
|  |  |  |  |-- [End]
```

Other names and brands may be claimed as the property of others. All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Linkage of .spim FILE to .ibs FILE

.ibs FILE

-- File Header Section
...
...
-- [Component]
...
...
...
...

Example:

[Device SPIM Group] Group_name_1
Device_SPIM_name_1 NA
Device_SPIM_name_2 NA

| selector under [Component]
| if it is in the .ibs file
| if it is in the .ibs file

| ... Device_SPIM_name_3 spim_folder/file_name_1.spim
| ... RELATIVE to the .ibs file
| ... Device_SPIM_name_4

| [Device SPIM Group] Group_name_2
Device_SPIM_name_4 NA
Device_SPIM_name_5 NA

| selector under [Component]
| if it is in the .ibs file
| if it is in the .ibs file

| ... Device_SPIM_name_5 spim_folder/file_name_2.spim
| ... RELATIVE to the .ibs file
| ... Device_SPIM_name_6

Other names and brands may be claimed as the property of others. All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Example .spim FILE - Supports PI AC Analysis

[SPIM Touchstone File]

<table>
<thead>
<tr>
<th>file_type file_reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>File_TS <path>Intel_CPU2_VCC3_PKG.s20p</td>
</tr>
</tbody>
</table>

[End SPIM Touchstone File]

*** Here below explains how to use *.snp s-element model in IBIS-ISS.

```plaintext
.model pkg_model S N=20 tstonefile
  ='Intel_CPU2_VCC3_PKG.s20p'
  S_one_ref
+ OB_Stimulus_1
+ OB_Stimulus_2
+ OB_Stimulus_3
+ OB_Stimulus_4
+ OB_Stimulus_5
+ OB_Stimulus_6
+ OB_Stimulus_7
+ OB_Stimulus_8
+ OB_Sense
  + BGA_1
  + BGA_2
  + BGA_3
  + BGA_4
  + BGA_5
  + BGA_6
  + BGA_7
  + BGA_8
  + BGA_9
  + BGA_10
  + BGA_11
  + 0
  + mname=pkg_model
```

[SPIM Stimulus]

<table>
<thead>
<tr>
<th>OB_Stimulus</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_Stimulus_1</td>
<td>0.20</td>
</tr>
<tr>
<td>OB_Stimulus_2</td>
<td>0.10</td>
</tr>
<tr>
<td>OB_Stimulus_3</td>
<td>0.05</td>
</tr>
<tr>
<td>OB_Stimulus_4</td>
<td>0.05</td>
</tr>
<tr>
<td>OB_Stimulus_5</td>
<td>0.20</td>
</tr>
<tr>
<td>OB_Stimulus_6</td>
<td>0.05</td>
</tr>
<tr>
<td>OB_Stimulus_7</td>
<td>0.05</td>
</tr>
<tr>
<td>OB_Stimulus_8</td>
<td>0.30</td>
</tr>
</tbody>
</table>

[End SPIM Stimulus]

[SPIM Target]

<table>
<thead>
<tr>
<th>[SPIM Observation Port] OB_Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(Frequency) Z(typ) Z(min) Z(max)</td>
</tr>
<tr>
<td>100000 0.0069 NA NA</td>
</tr>
<tr>
<td>10000000 0.0069 NA NA</td>
</tr>
<tr>
<td>65000000 0.0130 NA NA</td>
</tr>
<tr>
<td>190000000 0.0285 NA NA</td>
</tr>
<tr>
<td>400000000 0.0285 NA NA</td>
</tr>
</tbody>
</table>

[End SPIM Target]
Example .spim FILE - Supports Power DC Analysis

[Rnetwork File]
| file_type file_reference
| File_IBIS_ISS <path>My_CPU2_VCC3_PKG_Rnetwork.ckt
| ...
[End SPIM Rnetwork File]

[SPIM Current]
| I(name) I(typ) I(min) I(max)
| VCC 4.50 NA 7.50
[End SPIM Current]

[SPIM Voltage List]
| V(name) V(typ) V(min) V(max)
| VCC 1.000 0.900 1.100
[End SPIM Voltage List]

[End SPIM Rail]

[End Chip SPIM]

To Achieve:
- Most accurate per-pin current distribution
- Most accurate per-pin voltage droop map
- Most accurate Board level full PD analysis
FastPI (Platform PI Architecture with SPIM) Roadmap

Customer Database (customer)

SPI Models (Chip vendors)

C/L/D/R/S models (customer/vendors)

VR model (Auto-cal./Vendor)

SPIM works standalone, and/or also together with all IBIS Power models of Capacitor/Inductor/Diode/Resistor

FastPI (Platform PI design Framework)
Calling for major EDA vendors.

IEEE Paper: **Scalable Platform Power Integrity Design Approach with Standard PI Model (SPIM) and Unified PI Target (UPIT)**

AC analysis (Review & Sign-off) Version-1

Capacitor optimization for cost-optimal PDN

DC analysis (Review & Sign-off) Version-2

Transient analysis (Validation/VRTT) Version-3

User Friendly
EDA Ecosystem
Well established!
Next Steps:

- Example .spim file for golden example available in Q3’2023
- Cookbook Rev1.0 for SPIM Ver1.0 available in Q4’2023
- BIRD223 integration into a future release of the IBIS Specification
- SPIM parser available in a future release of IBISCHK
Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2022 Intel Corporation. All rights reserved.
THANK YOU!

Intel

Kinger.cai@intel.com