
AMI DLL Hook: A Novel IBIS-AMI Simulation
Debugging Method for Model Users

Chuanyu Li, Alaeddin A Aydiner, Sleiman Bou-Sleiman, Xinjun Zhang

Hybrid IBIS Summit with IEEE EMC+SIPI 2024
Phoenix, Arizona, USA
August 9, 2024

Chuanyu Li

2

Chuanyu is a signal integrity engineer at Intel.

He received his B.S. degree and M.S. degree in electrical engineering from
Harbin Institute of Technology, Harbin, China, in 2014 and 2016, respectively,
working on electromagnetics simulation and power electronics. He also studied
as an exchange student in National Taiwan University of Science and
Technology, Taipei, in 2012-2013.

He has been working as a signal and power integrity engineer since his
graduation in 2016. After joining Intel in 2022, he has been focusing on signal
integrity. His current research interests include die-to-die connection protocols
and buffer modeling.

Sleiman Bou-Sleiman

3

Sleiman is a Senior Staff engineer and Analog and Mixed Signal IP Architect at
Intel.

Sleiman received his B.E. in Computer and Communication Engineering from
the American University of Beirut, Lebanon in 2005, M.Sc. in Electrical
Engineering from the Swedish Royal Institute of Technology (KTH) in 2007 and
Ph.D. in Electrical Engineering from The Ohio State University in 2011. His
research dealt with PLL frequency synthesis as well as robustness enhancement
techniques and efficient built-in-testing for RFICs. Since joining Intel, Sleiman
has been working on high-speed wireline SerDes transceiver architectures.

Sleiman has authored and co-authored a number of journal and conference
papers, patents, book chapter, and a book on RF SoC Built-in-Self-Test and
digital self-calibration. He is also technical reviewer for a number of journals
and Transactions, an expert evaluator for the EU’s European Innovation Council,
and serves on the steering committee of the IEEE Midwest Symposium on
Circuits and Systems (MWSCAS).

Agenda
• Motivation

• Brief mechanism of IBIS-AMI simulation and hook debugging

• Implementation of the AMI DLL hook

• Practice of AMI DLL hook in SerDes AMI model alternative EDA
enabling project

• Conclusion and future work

4

Motivation
• I/O Buffer Information Specification (IBIS) Algorithmic Modeling Interface (AMI)

model is now widely accepted in industry for SerDes signal integrity simulation.

• When running simulation with IBIS-AMI models, the following problems are
common:

• Trend of IBIS-AMI simulation is not well-matched to silicon simulation.

• Simulation results are different in different EDA software.

• As a model user, it is difficult to debug the simulation because:

• No debugging features defined in IBIS spec yet.

• Try-and-run is inefficient, time-consuming, and is not guaranteed to solve the problem.

• Few models or EDA provide enough debug dumps.

• A general debugging method is needed for IBIS-AMI simulations!

5

Results can be significantly different in
different EDA software with same channel

Trend of AMI simulation doesn’t match
silicon simulation well

Brief mechanism of IBIS-AMI simulation
• AMI executable model file is packed as DLL or SO

format library

• The process of EDA software calling AMI DLL files is
a typical API calling process

• There are many API calls in an AMI simulation
process.

• An API call contains much information and could be
helpful for debugging.

6

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave()

Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3

Waveform

Calculation

AMI_GetWave()

 Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation

Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_GetWave()

AMI_Close() Clean

Memory etc.

Clean

Memory etc.

Brief mechanism of hooking
• Hooking is the procedure that changes the system calls in a way

that its own functions were used instead of the original ones.

• Create “breakpoints” on API calls.
• “Breakpoint” here means monitoring/dumping data and altering data

are possible, just like a breakpoint in software debugging domain.

• Can be used for monitoring application communication and
altering behaviors of the API calls.

• Hook functions should be defined exactly the same as the
original functions. Hooking is possible to be injected into the
AMI simulation as AMI functions are defined in IBIS spec.

7

Software

A
DLL B

Call function F

Return function F

Normal function calls

Software

A
DLL B

Hook function calls

Hook

C

Return function

F

Return function

F with modified

output

Call function F

with modified

input

Print all input/output

Brief mechanism of hook debugging in IBIS-
AMI simulation
• Injecting hooks creates four breakpoints in analytical

simulations and at least eight breakpoints in
transient simulations.

• The breakpoints provided extra dump information
and provides the ability to alter the data, which
helps debugging in IBIS-AMI simulation process.

8

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

Implementation of AMI DLL hook
• Implementation of an AMI DLL hook is divided into two major approaches:

• API hooking
• DLL injection

• API hooking programming
• Purpose is to create a DLL capable of performing “API hooking”
• Six necessary steps:

9

1). Export AMI standard API functions 2). Load original model 3). Obtain original API function addresses

1). Export AMI standard API functions
4). Call the original API function

2). Load original model
5). Dump and modify

3). Obtain original API function addresses
6). AMI executable model releasing

Implementation of AMI DLL hook
• Implementation of an AMI DLL hook is divided into two major approaches:

• API hooking
• DLL injection

• API hooking programming
• Purpose is to create a DLL capable of performing “API hooking”
• Six necessary steps:

10

Implementation of AMI DLL hook
• Implementation of AMI DLL hook is divided into two major approaches:

• API hooking

• DLL injection

• DLL injection
• Purpose is to cheat EDA so that the APIs will be called from the hook

• Change the [Algorithmic Model] keyword declaration in IBIS model. Then put the
hook together with the *.ibs, *.dll and *.ami file.

11

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

• Practice in SerDes AMI model alternative EDA enabling project:

• Different results were obtained from two different EDA tools
before implementing hooks.

• Found 5 observations impacting results in the first week of
implementing hook.

• 3 observations are user setting misalignments.

12

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

• Observation 1: impulse response truncation
• Found in the first breakpoint by unexpected

“number_of_rows” dump.

• Impulse response passed to AMI model is shorter than the
matrix obtained from the software output.

• Solution: Truncate input impulse response matrix to
the same in all EDA tools

13

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

• Observation 2: rising edge shaping difference
• Found in the first breakpoint by comparing dumped impulse response matrix.

• Rising edge shaping methods are different in EDAs:
• one is linear edge, another is gaussian edge.

• Solution: Force one EDA to provide gaussian edge

14

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

• Observation 3: AMI input parameters formatting issue
• Found in the first breakpoint by unexpected “TapWeights”

keyword dump.

• One of the EDA tools passes this parameter “as-is” while the
input we provided is a formula.

• Solution: Provide numbers instead of formulas to EDAs

15

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

• Observation 4: Different crosstalk handling methods
• Found in the first breakpoint by different “aggressors”

dump.

• The two EDA tools are handling crosstalk by different
methods.

• Solution: We understand this difference and
introduced single line simulation comparison as well.

16

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

• Observation 5: AMI_Init() modified curves were
impacting transient simulation results in one of the EDAs
• Found in the 2nd/3rd/4th breakpoints by altering the return

impulse response matrix and compare the results

• This behaviour is not expected as the transient calculation
should only convolve the input impulse response matrix and
ignore others

• Solution: We reached that EDA vendor and reported this
problem.

17

EDA Tool

RX IBIS Model TX IBIS Model

Start

Calculate Impulse

Response

Call Tx AMI

AMI_Init()

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 1a

TX Analog

Buffer

RX Analog

Buffer

IR

Matrix 2

Call Rx AMI

AMI_Init()

IR

Matrix 3a

Init Model

Init Memory

AMI_Init()

Finish

IR

Matrix 4
AMI_Init Done

Wave

Matrix 1a

Waveform

Calculation

Generate Stimulus

Call Tx AMI

AMI_GetWave()

AMI_GetWave

() Finish

Wave

Matrix 2

Convolving IR

1 and wave 2

Call Rx AMI

AMI_GetWave()

Wave

Matrix 3a

Waveform

Calculation

AMI_GetWave

() Finish

Wave

Matrix 4

RX Waveform

Postprocessing

Simulation Done

Postprocessing

Response

All blocks

calculated

AMI_Init()

AMI_Close()
Clean

Memory etc.

Clean

Memory etc.

AMI_GetWave()

RX AMI Hook

IR

Matrix 3

IR

Matrix 4a

Wave

Matrix 3

Wave

Matrix 4a

Redirect

Clean

Memory etc.

TX AMI Hook
IR

Matrix 1

IR

Matrix 2a

Wave

Matrix 1

Wave

Matrix 2a

Redirect

Clean

Memory etc.

Examples and Use Cases:
AMI DLL hook in SerDes AMI model alternative EDA enabling project

Conclusion
• This paper proposed AMI DLL hooking as a novel debugging method for model

users or validators to debug IBIS-AMI models across various EDA software.

• The implementation of the AMI DLL hook in the SerDes AMI model alternative
EDA enabling project has provided evidence of its effectiveness and utility.

• The AMI DLL hook has allowed for the segmentation of the full channel
simulation into several parts to provide additional breakpoints and to debug
part by part.

• This effort could contribute to enhancing the consistency of AMI models in the
industry.

18

Future Work
• We may create a "results consistency check tool" to sign off AMI

executable models for model vendors by implementing hooks into
vendor AMIs.

• We may also reshape it into a more user-friendly debug tool to help
more engineers in the industry.

19

Chuanyu Li
Intel Corporation

chuanyu.li@intel.com

Sleiman Bou-Sleiman
Intel Corporation

sleiman.bou-sleiman@intel.com

Thanks!

	Default Section
	Slide 1
	Slide 2: Chuanyu Li
	Slide 3: Sleiman Bou-Sleiman
	Slide 4: Agenda

	motivation
	Slide 5: Motivation

	mechanism
	Slide 6: Brief mechanism of IBIS-AMI simulation
	Slide 7: Brief mechanism of hooking
	Slide 8: Brief mechanism of hook debugging in IBIS-AMI simulation

	implementation
	Slide 9: Implementation of AMI DLL hook
	Slide 10: Implementation of AMI DLL hook
	Slide 11: Implementation of AMI DLL hook

	Practice
	Slide 12: Examples and Use Cases: AMI DLL hook in SerDes AMI model alternative EDA enabling project
	Slide 13: Examples and Use Cases: AMI DLL hook in SerDes AMI model alternative EDA enabling project
	Slide 14
	Slide 15: Examples and Use Cases: AMI DLL hook in SerDes AMI model alternative EDA enabling project
	Slide 16
	Slide 17: Examples and Use Cases: AMI DLL hook in SerDes AMI model alternative EDA enabling project
	Slide 18: Conclusion
	Slide 19: Future Work
	Slide 20

