Creating IBIS Models for Stacked-Die Packages

Steve Peterson
Intel Corporation
steve.peterson@intel.com
02-Feb-04
Problem Statement

- Intel sells memory with several devices stacked inside a single package
- We receive bare die from several vendors
 - We receive IBIS models but no schematics
- Customers require IBIS models for new stacked-die package
Solution

• Use internal schematics plus vendor IBIS models to create a new netlist
• Simulate to generate IV and VT curves for new IBIS model
Methodology

• Generate two sets of IV and VT curves
 – Device A is active while device B is tri-stated
 – Repeat with device B active and A tri-stated
• Build new IBIS model using both curves
 – Assign D[0] to A active (with B tri-stated)
 – Assign D[7:1] to B active (with A tri-stated)
• Edit IBIS model to add model_selector
 – Change D[7:0] to use model_selector
 – Requires IBIS version 3.2 or higher
Data Bus Example

● BEFORE

[IBIS Ver] 2.1

... [Pin] signal_name model_name
B1 DQ0 Ab_output
B2 DQ1 Ba_output
B3 DQ2 Ba_output
B4 DQ3 Ba_output

At least one instance of each buffer
Manually add Model Selector

● AFTER

[IBIS Ver] 3.2

... [Pin] signal_name model_name
B1 DQ0 DQ
B2 DQ1 DQ
B3 DQ2 DQ
B4 DQ3 DQ

... [Model Selector] DQ
Ab_output Device A DQ
Ba_output Device B DQ
Ground Clamp Comparison

- New IBIS model reflects behavior of both die
- Device A ground clamp (-130mA)
- Device B ground clamp (-195mA)
- Combined ground clamp (-325mA)
AC Timing Comparison

- Original (single-die) pullup_on for device A
- Combined curve showing additional loading from device B
- Original device B
- Combined device B
Conclusion

• This document describes a methodology of generating a multi-die IBIS model from transistor netlists plus IBIS models

• Effects of multiple loads are accounted for
 – Power clamps for all devices are combined
 – Vt behavior accounts for additional loading

• Package parasitics can be handled using worst case loading or EBD format