The Benefits of Multi-Lingual Extensions to IBIS

Stéphane Rousseau
PCB European Product Specialist
Agenda

- Simulation Limitations
- Advanced Modeling Capabilities
- Modeling Alternatives:
 - Altera Stratix GX High-Speed Serial Interface (HSSI)
- Conclusions
Simulation Limitations

- Model availability remains an issue
 - Proprietary models and languages limit industry mass adoption

- IBIS has major limitations; customers can’t use it exclusively
 - Non-extensible syntax
 - Unable to model today’s buffer technology
 - Adaptive drivers and receivers
 - Limitations in modeling power supply dynamics

- SPICE has issues as well
 - Too slow for analyzing entire design!!
 - Models often encrypted to proprietary formats
 - Vendors reluctant to provide the IP often found in SPICE models

- Additional engine limitations exist
Advanced Modeling Capability

- Allow customers to use models in any possible industry standard format
 - There are different model formats and languages in use today for high-speed design
 - IBIS
 - SPICE
 - HSPICE, Eldo, PSpice, …
 - VHDL-AMS (IC level)
- By providing support for more than one, improve probability of finding a model
- Use the right model for the job at hand
Extensions to IBIS

- Allow IBIS models to reference external models through keywords
 - Standard language extensions
 - SPICE
 - VHDL-AMS
 - IBIS extensions
 - [External Model]
 - [External Circuit]
 - [Circuit Call]
 - [Node Declaration]
I/O Buffer Examples

- IBIS only

- IBIS Parasitics with SPICE Buffer

- SPICE Parasitics with VHDL-AMS buffer
Multi-Lingual Simulation

- Mix and match driver model formats on a single net

VHDL-AMS

```vhdl
entity ibis_tx_cmos is
generic (
    c_comp: real := 7.0e-12;
    vpudata: real_vector := (-5.250000e+00, ..., 7.500000e+00);  
    ipudata: real_vector := (3.555770e-01, ..., -1.356870e-01);
    ... same for vpd, ipd, vpc, ipc, vgc, igc
)
```

SPICE

```
R IS277 VCC out1 1.55K
C IS272 ibias NS238 28.3P
M IS46 NS240 ibias 0 0 NFET L=1.52U W=7.85U M=40
M IS283 out2 out2b VCC VCC PFET L=0.5U W=4U M=1
.MODEL NFET NMOS (RSH=17 KP=1.34M + GAMMA=0.919 PHI=0.707 LAMBDA=0.1M RD=52.88  
+ RS=52.55 CBD=4.79P CBS=5.73P PB=1  
+ CGSO=3.17P CGDO=2.04P CGBO=4.01P MJ=0.189 )
```

IBIS

- IBIS Ver: 3.2
- File name: sample.ibs
- File Rev: 0.0
- Date: August 31, 2002
- Source: Data Book
- Notes: Default model for source.
- Disclaimer: This information is modeling only

<table>
<thead>
<tr>
<th>Component</th>
<th>Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Generic</td>
</tr>
<tr>
<td>Package</td>
<td></td>
</tr>
<tr>
<td>R_pkg</td>
<td>typ</td>
</tr>
<tr>
<td>L_pkg</td>
<td>5.0nH</td>
</tr>
<tr>
<td>C_pkg</td>
<td>2.0pF</td>
</tr>
</tbody>
</table>
Modeling Alternatives: Starting Point

- Altera Stratix GX High-Speed Serial Interface (HSSI)
 - SPICE transistor level model
 - Single circuit for transceiver
 - Selectable parameters for Driver pre-emphasis levels, Driver output voltage amplitude, Driver impedance, Receiver equalization level, Receiver impedance, Trace length and loss

- 3” lossy differential pair trace model from driver pins to receiver pins

- Circuit as delivered took 21 minutes (real time) to simulate in Eldo (SPICE)
Original Transceiver Model

Multi-page schematic created with SpiceVision PRO from Concept Engineering
Issues with SPICE Models

- Can’t simulate Driver separate from receiver
 - Probably simulating extra nodes that are irrelevant
- Subcircuits encrypted (Eldo)
- Global nodes (.global in SPICE)
 - Possible conflict with models from another source
- Scale option = 1u
 - Another possible conflict with other models

* These are common issues with SPICE models *
Transceiver Model Reduction

- **Driver and Receiver sections separated**
 - Allows instantiation of driver and receiver IBIS 4.1 models on separate parts for design verification

- **Driver section reduced**
 - Data and pre-emphasis signal generation simplified with controlled-source logic

- **Simulation time reduced to 12 minutes real time – 57% of original time**
Complex package model
- 3 differential pairs fully coupled
- 3 cascaded sections
Package Model Reduction

- Element elimination
- Simple IBIS RLC parameters
- S-parameter model
Package Model Element Elimination

- Reduced simulation time by about 10%
- Changed results beyond acceptable error
Simple IBIS RLC Parameters

- Can’t be more accurate than reduced element model
- Should provide much faster simulation time
- Reduced simulation time by 25%
- Reduced overshoot
 - Assumed impedance of 50 Ohms was better than original SPICE model

\[L = T_d \times Z \]
\[C = T_d / Z \]

\(T_d \) measured from original simulation is 83ps (Tr ~ 200ps)
Assume \(Z_0 \) is 50\(\Omega \)
\(L = 4.15 \text{nH} \)
\(C = 1.66 \text{pF} \)
S-parameter Package Model

- S-parameter set created by SPICE simulation of original package model
 - Frequency steps of 100MHz from 100MHz up to 10GHz
- Simulation time reduced by 25% from full package model simulation
- S-parameters have other issues
 - Usually no DC information
 - Possible non-causal or non-passive results
Behavioral Modeling

- Functionality and accuracy must be maintained!
- Majority of simulation time is spent solving the 1000’s of nodes in the transistor level transmitter and receiver models
- This time could be greatly reduced by using behavioral models such as VHDL-AMS
VHDL-AMS Model Correlation
VHDL-AMS Model Functionality

The Benefits of Multi-Lingual Extensions to IBIS
DATE IBIS Summit 2004
Signal Comparison at the Receiver

SPICE package

S-param package
Simulation Time Reduction

- VHDL-AMS - Spar pkg
- VHDL-AMS - reduced pkg
- VHDL-AMS - full pkg
- SPICE - Spar pkg
- SPICE - reduced pkg
- SPICE - full pkg
- Original

The Benefits of Multi-Lingual Extensions to IBIS
DATE IBIS Summit 2004
Conclusions

- The SPICE model can be reduced to save simulation time.
- The package model can be translated to other formats to save some simulation time, but doesn’t justify the change in results.
- Using a behavioral model of the driver and receiver drastically decreases simulation time to less than 1/10 and maintains fidelity to the original results.
- Extensions to IBIS and Multi-Lingual Simulator provide flexibility and performance.