SSO Simulation with IBIS

Manfred Maurer
manfred.maurer@siemens.com
Motivation

SSN with IBIS in 2000
 - Simulation setup
 - BEHAVIOR – model with Voltage-Controlled Current Sources
 - very good concordance with transistor based models

Table driven kssn-multiplier
 - Multiplier extraction
 - Results HSPICE vs. VCCS-BEHAVIOR
 - Lacking concordance

Enhanced VCCS-BEHAVIOR
 - Additional RC – Timing coefficient
 - Improved results

Summary
Acknowledgements

Overview

- SSN 2000
- kssn - table
- Enhanced VCCS model
- Summary

- INFINEON TECHNOLOGIES
 - HYB18T512160AF
 - DDR2 - Memory

- TEXAS INSTRUMENTS
 - CDCE706
 - PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER

IBIS Summit Meeting Santa Clara 2006
SSO Simulation Setup
(m+1 switching outputs)

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

IBIS Summit Meeting Santa Clara 2006
VCCS-Model enhancement

- A second multiplier for rising \((kssnr)\) and falling \((kssnf)\) edges
- Both multipliers are controlled by the \((Vdd-Vss)\) voltage drop
- Feedback on the gate source voltage of the output transistors
- Multiplier generation:
 - Pullup/down V/I-tables as a function of Vdd
 - SSO-V/t-table (Golden Waveform)
VCX16244 SSN analysis results (rising edge)
Enhanced two waveform behavioral model Number of SSO = 6

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

Node OUT: Transistor based Behavioral
Node END: Transistor based Behavioral

IBIS Summit Meeting Santa Clara 2006
kssnr/f Multiplier Generation Method

CMOS Driver Output High Characteristic

I(3.6V) = I(3.6V)/I(3.3V)

50 Ohm loading characteristic

I(3.3V)
I(3.6V)
kssn rising coefficient extraction
HYB18T512160AF (DDR2) INFINEON

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Santa Clara 2006
kssn falling coefficient extraction
HYB18T512160AF (DDR2) INFINEON

Overview
SSN 2000
Enhanced VCCS model
Summary

IBIS Summit Meeting Santa Clara 2006
HYB18T512160AF / INFINEON
kssn rising/falling @ Vdd = 0.5V to 3.6V (1.8V nom.)
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 TEXAS INSTRUMENTS
kssn rising/falling @ Vdd = 0.5V to 5V (3.3V nom.)

Vdd_nom

slew rate max

slew rate min

IBIS Summit Meeting Santa Clara 2006
DDR2 buffer Infineon
Supply voltage drop (L=2x1nH) / Load Tline Zo=50 Ohm

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Santa Clara 2006
TI CDCE706 / Voltage drop / Rising edge
VCCS-model with kssn table (L=2x3nH)

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

IBIS Summit Meeting Santa Clara 2006
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 Rising edge vs. Vdd drop
Transistor based model

Vdd=3.3V

Vdd drop
L=1nH … 9nH

Sig.@Vdd=3.3V

Sig.@Vdd drop
Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

TI CDCE706 Falling edge vs. Vdd drop
Transistor based model

Vdd drop
L = 1nH ... 9nH

Vdd = 3.3V

Sig. @ Vdd drop
Sig. @ Vdd = 3.3V

IBIS Summit Meeting Santa Clara 2006
Differences VCCS 2000 vs. 2006

<table>
<thead>
<tr>
<th></th>
<th>VCCS 2000</th>
<th>VCCS 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Time</td>
<td>ca. 5ns</td>
<td><500ps</td>
</tr>
<tr>
<td>Operation Point</td>
<td>saturation region</td>
<td>linear region</td>
</tr>
<tr>
<td>Vdd/GND drop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amplitude</td>
<td>ca. 15%Vdd</td>
<td>ca. 40% Vdd</td>
</tr>
<tr>
<td>width</td>
<td>ca. 7ns</td>
<td>ca. 1ns</td>
</tr>
<tr>
<td>Design of the OUTPUT stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time domains</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Slew rate control</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>Vdd-drop Feed back</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Prestage @Vdd_int</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>On-die capacitance</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Vdd drop improvement with C_pre=30pF
CDCE706 with PKG L=2x3nH 10 SSO

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Santa Clara 2006
Vdd drop improvement with $C_{pre}=30\text{pF}$

CDCE706 with PKG $L=2\times3\text{nH}$ 10 SSO
Enhanced VCCS-Behavior Model with \textit{kssn} (static) and \textit{td_RC} (dynamic) coefficients

Overview

- SSN 2000
- \textit{kssn - table}
- Enhanced VCCS model

Summary

Enhanced VCCS-Behavior Model with \textit{kssn} (static) and \textit{td_RC} (dynamic) coefficients

\begin{align*}
\text{td_RC} \text{ determination} \\
- \text{by optimisation through the } Vdd_drop \text{ @ known } L \\
- \text{by adjustment from } I=I(t) \text{ table @ } L
\end{align*}

\begin{equation*}
td_RCr(Vdd-Vss) * kssnr(Vdd-Vss) * kpu(t) * Ipu(Vout)
\end{equation*}

\begin{equation*}
td_RCf(Vdd-Vss) * kssnf(Vdd-Vss) * kpd(t) * Ipd(Vout)
\end{equation*}

\begin{equation*}
Ipc(Vout) \quad C_comp/2 \\
Igc(Vout) \quad C_comp/2
\end{equation*}

IBIS Summit Meeting Santa Clara 2006
Vdd drop improvement
DDR2 with PKG L=2x3nH 5 SSO

Overview
SSN 2000
kssn - table
Enhanced VCCS model
Summary

IBIS Summit Meeting Santa Clara 2006
Vdd drop improvement
CDCE706 with PKG L=2x3nH 10 SSO

Overview

SSN 2000

kssn - table

Enhanced VCCS model

Summary

IBIS Summit Meeting Santa Clara 2006
Summary

- With improved IBIS models, SSO can be simulated in a better concordance with transistor based models, IF
 - kssn – table information (BIRD 97.x)
 - current vs. time tables @ known RLC environment (BIRD 95/98)

- Advantages
 - Signal integrity analysis
 - PDS – Voltage drop
 - Timing simulation

- More investigations have to be done, to evaluate for different technologies, the validity range and the accuracy of the proposed improvement
SSO Simulation with IBIS

Manfred Maurer
manfred.maurer@siemens.com

Thank you for your attention