Advances in 7.5Gb/s SerDes Modeling using IBISv4.2 (VHDL-AMS and Verilog-AMS)

Luis Boluña, Ehsan Kabir, Susmita Mutsuddy, Kelvin Qiu, Daniel Ho, and Dr. Sang H. Baeg*

DCBU and DSSG CE Signal Integrity Teams, Cisco Systems, Inc.
* - with Hanyang University, South Korea
Special Acknowledgements

John Fisher
Arpad Muranyi
Essaid Bensoudane
Saeid Sadeghi
Gareth Nicholls
Peter Holland
Akshaye Sama
Where we left off: DesignCon 2006 paper

- Demonstrated a detailed DFE design in *AMS is feasible.
- Explained the challenge of interoperability and the promise of *AMS modeling to solve that and much more.
- The paper served as a catalyst to an ongoing effort in SerDes modeling across the industry.

The intent of this paper is to provide the remainder of the industry with an update on what has been accomplished and the status on ongoing efforts.
Agenda

- Demonstration of full SerDes channel simulation using detailed vendor models across 5 major ASIC vendors.
- Correlation of vendor models
 - To HSPICE
 - To Vendor Internal Matlab tool
 - To Silicon
- Demonstration of vendor model interoperability in a full SerDes Channel simulation(s).
- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.
- Model interoperability across several EDA tools
- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
Agenda

- Demonstration of full SerDes channel simulation using detailed vendor models.

- Correlation of vendor models
 - To HSPICE
 - To Vendor Internal Matlab tool
 - To Silicon

- Demonstration of vendor model interoperability in a full SerDes Channel simulation(s).

- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.

- Model interoperability across several EDA tools

- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
Example of Vendor Models: Full TX and RX EQ solution

- Analyzed channel for optimum pre-emphasis settings; -10% pre-cursor tap weight, -20% first post-cursor tap weight.
Case 1 – 7.5Gbps through Backplane

Simulation Settings
- PRBS7 @ 7.5Gbps (UI = 133 ps)
- 60,000 bits simulated
- TT Corner
Case 1 – 7.5Gbps through Backplane
Case 2 – 7.5Gbps Chip-to-Chip

Simulation Settings

- PRBS7 @ 7.5Gbps (UI = 133 ps)
- 60,000 bits simulated
- TT Corner
Case 2 – 7.5Gbps Chip-to-Chip
Agenda

- Demonstration of full SerDes channel simulation using detailed vendor models.

- **Correlation of vendor models**
 - To SPICE
 - To Vendor Internal Matlab tool
 - To Silicon

- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.

- Model interoperability across several EDA tools

- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
Vendor A TX AMS to SPICE Correlation: FAST/SLOW Process Corners

Slow process corner, 125C

Fast process corner, 125C
Vendor A RX AMS to SPICE Correlation

- AMS RX input impedance match perfectly with SPICE output.

- RED = S11(SPICE)
- BLUE = S11(AMS)
Vendor B VHDL-AMS to Spice Correlation

Differential eye diagram after 19 inch channel
Orange (AMS)/Green (SPICE)

Equalized Channel after 19 inch channel (After DFE)
Magenta (AMS)/Green (SPICE)
Vendor Verilog-AMS Model correlation to Vendor Internal Matlab tool

- **Simulation setup:** 8.5 Gb/s with PRBS7 pattern
 - Cisco backplane channel
 - Nominal corner
 - 200k Bits simulated with 200 ppm freq offset
Vendor Verilog-AMS Model correlation to Vendor Internal Matlab tool: Results

- Eye diagrams after the DFE

Eye diagram from Vendor’s internal tool

Eye diagram from AMS simulation
Vendor Verilog-AMS Model correlation to Vendor Internal Matlab tool: Results

Vendor's internal tool
- Mean eye opening = 1.696853e-01
- VMIN 34.4\% VMAX 65.6\% VEYE 58.4mV 10^-17
- HMIN 19.1\% HMAX 14.3\% HEYE 28.6\% 10^-17

AMS
- Mean eye opening = 1.708032e-01
- VMIN 35.5\% VMAX 64.5\% VEYE 60.6mV 10^-17
- HMIN 20.1\% HMAX 14.4\% HEYE 28.8\% 10^-17

0.2 \% difference HEYE at 10^-17
2.2 \% difference VEYE at 10^-17
Vendor VHDL-AMS TX to Silicon Correlation

- PRBS31 data pattern from TX at 7.5 Gb/s

Lab Measurement

AMS Output

Sim Setup
Agenda

- Demonstration of two full SerDes channel simulations using detailed vendor models.
- Correlation of vendor models
 - To HSPICE
 - To Vendor Internal Matlab tool
 - To Silicon
- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.
- Model interoperability across several EDA tools
- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
Verilog-AMS to VHDL-AMS interoperability

- Test conditions:
 Data Pattern: PRBS 7 running @ 6.25 Gb/s
 Nominal condition
 TX FFE on RX DFE on

![Diagram of TX and RX with 7 inch channel and vendor packages]
Verilog-AMS to VHDL-AMS interoperability

At the RX input

After the DFE
Reverse: VHDL-AMS to Verilog-AMS interoperability

- Test conditions:
 Data Pattern: PRBS 7 running @ 6.25 Gb/s
 Nominal condition
 RX DFE on

![Diagram of test setup with TX, Package, 7 inch channel, 10 nF, RX, and Vendor B and Vendor A with labels for VHDL-AMS and Verilog-AMS]
Reverse: VHDL-AMS to Verilog-AMS interoperability

Eye diagram

Log Bit Error Rate

Results shown are after the DFE
Cross-talk Simulation: Interoperability Case Study

- Link’s data rate is 7.5 GHz;
- Verilog-AMS talking to Verilog-AMS (same vendor).
- NEXT is VHDL running at 6.5 GHz.
- FEXT is VHDL running at 7.5 GHz.
- No package Included.
- Numbers inside circles are showing mixed mode port numbers.

Cross-talk simulation setup
Interoperability Case Study … contd.

- Transient simulation length = 4.5 microseconds
- 7.5Gb/s PRBS 7 sent from transmitter of the link.
- 2 Identical sims: one with aggressors and one without aggressors.
Agenda

- Demonstration of two full SerDes channel simulations using detailed vendor models.
- Correlation of vendor models
 - To HSPICE
 - To Vendor Internal Matlab tool
 - To Silicon
- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.
- Model interoperability across several EDA tools
- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
Model interoperability across several EDA tools
Agenda

- Demonstration of two full SerDes channel simulations using detailed vendor models.
- Correlation of vendor models
 - To HSPICE
 - To Vendor Internal Matlab tool
 - To Silicon
- Demonstration of VHDL-AMS to Verilog-AMS interoperability in a SerDes full channel simulation.
- Model interoperability across several EDA tools
- Demonstration of post processing modules (to extrapolate BER) in fully coded AMS
AMS post processing

- Demonstration of:
 - Extrapolate a time based simulation for BER metrology
 - Standardization of Signal Integrity based testing by use of post processing (independent of EDA tool)
 - Porting of Matlab based tools

- Took an existing Matlab based post processing function
 - Use as much of AMS language as possible for portability across EDA vendors
 - Creation of library of specialized Matlab functions into AMS

Special acknowledgement of Matlab code source: ST Microelectronics
Results based on AMS script

Histogram of zero crossings extracted from waveform

CDR based on normalized histogram data
Learnings in translating from Matlab

- Multidimensional arrays became troublesome- but not an inherent AMS issue.
- Working around type changes in VHDL-AMS
- Certain math functions like sqrt are available- others like inverf had to be written (based on Fortran examples). Other matlab special functions such as hist were ported.
- It is possible to port over Matlab code to VHDL-AMS
- Graphical plotting is time consuming
Next Steps

- Need to avoid compiled models in favor of IP encryption. Significant work is under way with IEEE P1735
- More work needed from EDA vendors for tool features, utilities and multi-lingual support as per IBISv4.2
- Development of *AMS utilities in collaboration with Academia
- Work with our ASIC vendors for next generation *AMS models
- Simulation of higher data-rate SerDes and further modeling in *AMS
Solution providers of AMS