Multi-Mode Modeling

Bob Ross
IBIS Summit Meeting
DesignCon 2008
Santa Clara, California
February 7, 2008
Configurable Buffers in IBIS

- **Current methods in IBIS**
 - [Model Selector] (general usage – all voltages, modes, technologies, conditions)
 - [Alternate Package Models]
 - [Series Switch Groups] (and [On], [Off] models)
 - [Add Submodel] (for specific state (e.g., Non-driving mode only)

- **Tool/user select based on ALL choices documented**
 - State selection (e.g., for I/O Driving or Non-driving operation)
 - EBD format – multiple buffers on net
 - Algorithmic Model Executable (Windows, Unix, Linux, etc.)
 - Multi-lingual language selection (VHDL-AMS, SPICE, Verilog_A(MS), etc.)
 - Syntax with levels of override for higher level functionality (technical and levels of specification)
Missing Configurability

• Examples
 – Differential/single-ended reconfiguration
 – 3-state vs. I/O distinction if both exist in device (not really needed)
 – 3-state on/off toggle dynamic characterization when “enable” is switched (not really needed)

• Can offer separate [Component]s for hard coded configurations

• EDA tools can hard override the configuration

• Example of one configurable buffer given
Real Output Clock(s) Example

CMOS (3.3V, 2.5V, 1.8V, 1.5V plus slew rates [Model Selector]s) In Sync. Mode Selector MUXs

LVPECL, LVDS [Model Selector]s

(Complimentary CMOS possible, but not in this device)
Four [Component] Choices

[Component] CLOCKS_SS
[Component] CLOCKS_SD
[Component] CLOCKS_DS
[Component] CLOCKS_DD

8 Single-ended (S) pins (1-8) or 4 Differential (D) pin-pairs (1,2 3,4 5,6 7,8)

Model Selectors in Sync. with Differential Pin assignments (next two slides)
[Model Selector] Choices for [Pin]s

<table>
<thead>
<tr>
<th>PIN</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>clk_1 { CMOS_A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>clk_2 { CMOS_A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>clk_3 { CMOS_A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>clk_4 { CMOS_A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>clk_5 { CMOS_B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>clk_6 { CMOS_B</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>clk_7 { CMOS_B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>clk_8 { CMOS_B</td>
<td></td>
</tr>
</tbody>
</table>
Four Distinct [Diff Pin] Assignments

[Diff Pin]
1 2
Both or Neither for Bank A
3 4
5 6
Both or Neither for Bank B
7 8
[Model Selector] CMOS_A
...
[Model Selector] CMOS_B
...
[Model Selector] Diff_A
...
[Model Selector] Diff_B
...
Issues Under Consideration

• Differential Mode (vdiff location problem)
 – “vdiff” – can be different for PECL and LVDS if these were Input models
 – (Not a problem here for Output only clocks)
• IBIS Limitation
 – No selection mechanism for re-configuration of single-ended (matched pairs) to differential
 – Originally an ECL option for early devices
 – Must use different [Component]s for hard-coded choices
Observations

• Configurability makes a strong case for moving differential parameters into the [Model] scope directly along with single-ended parameters
 – Already done for [Receiver Thresholds]
 – Ugly but solves dual mode problem for some technologies (DDR, USB, ECL, Configurable)

• Consider offering a single-ended/differential selection option
 – Another mechanism for EDA tools to control
 – Helps limit the choices
 – But selectors and S/D modes must be in sync.