Chip centric design requirements include
- consideration of system loading effects
- multi-chip design requires package models

System design requirements for SI/PI/EMC include silicon-level drivers and power grid models

Multi-vendor EDA flows are the norm, not the exception
- EDA vendors may vary across chip/package/board
- EDA vendors may vary for physical design versus extraction

IBIS-MCP is a proposal to the IBIS Interconnect Task Group for a vendor-neutral method to specify electrical and physical connectivity information to enable automated connection of electrical models
- MCP topic first discussed with IBIS community at DAC IBIS Summit in July, 2009
- ref: “Model Connection Protocols for Chip-Package-Board System-level Analysis”, Brad Brim
Simple system

- How to quickly and reliably connect models for system-level analysis?
 - there may be literally thousands of physical connections
 - even with many physical pins “grouped” into single electrical nodes there may be hundreds of nodes to connect in a SPICE netlist
 - the order of nodes may not correspond from one netlist to the other
Simple system

- This will be applied in EDA tools for both physical and electrical connectivity purposes
 - the process must be automated
 - the enabling mechanism must be EDA vendor neutral and model neutral
 - an industry standard connectivity protocol is needed

```
chip netlist

more than a hundred to several thousand physical pins

package physical database

less than a hundred to a few thousand physical pins

board netlist
```
An existing MCP
comments in a SPICE netlist

* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] \{DIE|PKG|PCB\}
* [MCP Source] source text
* [Coordinate Unit] unit
* [Connection] Name Description numberPhysicalPins
 * [Connection Type] \{DIE|PKG|PCB\}
 * [Power Nets]
 * pinName modelNodeName netName x y
 * ...
 * [Ground Nets]
 * pinName modelNodeName netName x y
 * ...
 * [Signal Nets]
 * pinName modelNodeName netName x y
 * ...
* [MCP End]
A Simple Example

.subckt chip p01 p02 g01 g02 s01
* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] DIE
* [MCP Source] chip extraction tool
* [Coordinate Unit] um
* [Connection] abc bumps 5
* [Connection Type] PKG
* [Power Nets]
 n1 p01 PWR 0 0
 n5 p02 PWR 200 200
* [Ground Nets]
 n2 g01 GND 0 200
 n4 g02 GND 200 0
* [Signal Nets]
 n3 s01 RX1 100 100
* [MCP End]
--- SPICE elements ---
.ends

.subckt package p1 p2 p3 g1 g2 g3 s1 s2
* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] PKG
* [MCP Source] package extraction tool
* [Coordinate Unit] um
* [Connection] die1 myCPU 5
* [Connection Type] DIE
* [Power Nets]
 1 p1 VDD 0 0
 2 p2 VDD 200 200
* [Ground Nets]
 3 g1 VSS 0 200
 4 g2 VSS 200 0
* [Signal Nets]
 5 s1 In1 100 100
* [Connection] bga1 myMB 3
* [Connection Type] PCB
* [Power Nets]
 A1 p3 VDD -1000 0
* [Ground Nets]
 A3 g3 VSS 1000 0
* [Signal Nets]
 A2 s2 In1 0 0
* [MCP End]
--- SPICE elements ---
.ends

.subckt board ... pwr gnd sig ...
* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] PCB
* [MCP Source] board extraction tool
* [Coordinate Unit] mm
* [Connection] bga CPU_balls 3
* [Connection Type] PCB
* [Power Nets]
 A1 pwr VDD -1 0
* [Ground Nets]
 A3 gnd VSS 1 0
* [Signal Nets]
 A2 sig In1 0 0
* [MCP End]
--- SPICE elements ---
.ends
what if SPICE netlist supported ‘vector nodes’

```
.subckt chip abc[]
  * [MCP Begin]
  * [MCP Ver] 1.1
  * [Structure Type] DIE
  * [MCP Source] chip extraction tool
  * [Coordinate Unit] um
  * [Connection] abc bumps 5
  * [Connection Type] PKG
  * [Power Nets]
    * n1 p01 PWR 0 0
    * n5 p02 PWR 200 200
  * [Ground Nets]
    * n2 g01 GND 0 200
    * n4 g02 GND 200 0
  * [Signal Nets]
    * n3 s01 RX1 100 100
  * [MCP End]
--- SPICE elements ---
.ends
```

```
.subckt package die1[] bga1[]
  * [MCP Begin]
  * [MCP Ver] 1.1
  * [Structure Type] PKG
  * [MCP Source] package extraction tool
  * [Coordinate Unit] um
  * [Connection] die1 myCPU 5
  * [Connection Type] DIE
    * [Power Nets]
      * 1 p1 VDD 0 0
      * 2 p2 VDD 200 200
    * [Ground Nets]
      * 3 g1 VSS 0 200
      * 4 g2 VSS 200 0
    * [Signal Nets]
      * 5 s1 In1 100 100
  * [MCP End]
--- SPICE elements ---
.ends
```

```
.subckt board ... bga[] ...
  * [MCP Begin]
  * [MCP Ver] 1.1
  * [Structure Type] PCB
  * [MCP Source] board extraction tool
  * [Coordinate Unit] mm
  * [Connection] bga processor 3
  * [Connection Type] PCB
    * [Power Nets]
      * A1 pwr VDD -1 0
      * A3 gnd VSS 1 0
    * [Ground Nets]
      * A2 sig In1 0 0
  * [MCP End]
--- SPICE elements ---
.ends
```

then we could easily use a netlist for system-level analysis setup

```
... x1 con1[] chip
x2 con1[] con2[] package
x3 con2[] board
R board.con2[A1] board.con2[A3] 5m
...```
Simple system with MCP based connectivity

- MCP defines both electrical and physical connectivity
  - pin or net names may or not be the same across domain boundaries
  - pin locations may be translated, rotated or flipped between physical databases
MCP based connectivity for a 2 packaged chips

- 2 packaged chips on a board
MCP based connectivity for 2-die SIP

- A 2-die SIP
  - each chip has connectivity to the package but not directly to the other chip
MCP based connectivity for 2 stacked die

- 2 stacked die in a package (one flipchip, one wirebond)
  - again, no direct die-to-die physical connections
MCP based connectivity for 2 stacked die with die-to-die wirebonds

- 2 stacked die in a package (both wirebond)
  - direct die-to-die physical connections
    - whose parasitics are included as part of the “package” model
    - potentially confusing at first but logical when considering all die connections as a SiP package with a single model
    - avoids application-dependent die MCP definitions
MCP based connectivity for 2-die SIP with die-to-die wirebonds

- A 2-die SIP
  - with direct die-to-die physical connections
  - again, whose parasitics are included in the package model
MCP based connectivity for Package-on-Package

- 2 stacked packages, each single die
  - stackable package has 3 MCP connections
    - PCB, DIE and PKG

```
flipchip chip_1 model
 MCP connection to PKG

package_1 model
 MCP connection to PKG
 MCP connection to PCB
 MCP connection to DIE

package_2 model
 MCP connection to PCB
 MCP connection to PKG
 MCP connection to DIE

board model
```

```
wirebond chip_2 model
 MCP connection to PKG
 MCP connection to PCB
 MCP connection to PKG
```

```
```
MCP based connectivity for 2 stacked die with TSVs

- 2 stacked die with TSVs (Through Silicon Vias)
  - the chip model is now responsible for multiple MCP connections
IBIS-MCP Status

- MCP is quite general for chip-package-board systems
  - chip-centric design is supported with readily available and easily connected package/board models
  - system-centric design is supported with readily available and easily connected chip models

- Other applications may require additions or modifications to the initial proposal ???

- Discussions are schedule to begin on this topic in the IBIS Interconnect Task Group in the next few weeks
  - please join the Task Group discussions and help make this a more robust proposal
  - meetings are Wednesday mornings at 9:00am pacific time
Thank You!