SI/PI Co-Analysis and Linearity Indicator

Myoung "Joon" Choi, Vishram S. Pandit Intel Corp. IBIS Summit at DesignCon 2010

Acknowledgements: Woong Hwan Ryu, Joe Salmon

Copyright © 2010, Intel Corporation. All rights reserved.

Agenda

- Need for SI/PI Co-analysis
- Ingredients for SI/PI analysis
- Controllable/ Uncontrollable Parameters
- Different Cases and Decomposition
- Linearity Indicator
- Summary

Need for SI/PI Co-analysis

There are 3 major noise sources in the channel analysis

- Crosstalk, ISI, and SSO
- SI Only: Crosstalk and ISI; PI only: SSO
- For high speed low cost systems the separate analysis is not sufficient
 - Second and third order effects become prominent.
- SI/PI co-analysis is becoming increasingly important.

SI/PI steps

- Model Generation
 - Passive Models
 - PCB, Package, on-chip: 2D/ 3D EM Models
 - Buffer Models: PD info in Buffer models
- Power Grid Models
- Pattern Generation
- Full time domain simulations
 - Different cases for identifying 2nd/ 3rd order effects
- Controllable parameters and their variations

IBIS SSO Simulation

Simplified On-chip Power Grid and On-chip PDN Capacitor with Buffer Connection and PDN noise impact on eye jitter

End to End PDN model

PDN Model

 Grid, Pkg, PCB

 It needs to be with the SI channel models
 Coupling between power and signal needs to be considered during the modeling

 reference transition

via coupling, etc.

Example: PDN Response

Z11 profile at the Power node of Driver

Simulated Noise at the Power node of Driver

PDN Noise analysis determines the noise at different data rates. This noise gets coupled to signals at the chip level.
Interconnect impact needs to be determined by SI/PI analysis.

SI/PI Parameters

Examples	SI/PI Controllable Variables	SI/PI Uncontrollable Variables
Silicon	Ron, Slew rate, ODT, PDcap and Rdamp, Bumpout, I/O & EQ scheme, Power Grid Routing	I/O count, I/O device capacitor Unintentional PD Cap, Integrated passive element tolerances, Silicon process variations
Package/socket	Trace width and spacing between lines, Pin-map, Referencing scheme	I/O pincount, Package manufacturing tolerances, Passive element tolerances, Stackup parameters (dielectric height and constant), Limited signal trace width and spacing
РСВ	Trace width and spacing between lines, Rtt, Interconnect topology, Rs in memory channel, Referencing scheme	PCB manufacturing tolerances, passive element tolerances, Stackup parameters (dielectric height and constant), Limited signal trace width and spacing
DIMM/Connector	Trace width and spacing between lines, Connector pin- map, Rtt, Interconnect topology, Stub resistor (Rstub), Referencing scheme	Total I/O pincount, PCB manufacturing tolerances, Passive element tolerances, Stackup parameters (dielectric height and constant), Limited signal trace width and spacing

8

Different Cases

Combination of different cases can be run for SI/PI co-analysis

Response Decomposition can be performed

Forced Stimulus Setups for SI-PI Co-simulation						
	Case #	ISI	Cross-talk	SSO		
ISI	1	Minimal	Minimal	Minimal		
	2	Yes	Minimal	Minimal		
SSO, ISI	3	Minimal	Minimal	Yes		
	4	Yes	Minimal	Yes		
Cross-talk, ISI	5	Minimal	Yes	Minimal		
	6	Yes	Yes	Minimal		
Cross-talk, ISI, SSO	7	Minimal	Yes	Yes		
	8	Yes	Yes	Yes		

9 (intel

Minimal ISI Implementation

Construction of ISI needs only one or more rising and falling edge.

A lone bit excitation of ISI node for minimal ISI Eye construction by wrapping the waveform twice in time domain for the UI

Delayed bits excitation of ISI node for minimal ISI Eye construction

Delayed transition excitation of ISI node for minimal ISI Eye construction

SI/PI Simulation Cases

PDA(Peak Distortion Analysis) produce WC eye and WC patterns Full Time Domain SI-PI simulation might have eyes similar to PDA WC eye but the values are different because of SI-PI impact

SE WC Results Example Full Time Domain SI-PI Co-sim Results Ex uStrip Strip

Full Time Domain SI-PI simulation might have eyes similar to PDA WC eye but the values are different because of SI-PI impact

*Other names and brands may be claimed as the property of others

inte

13

Eye Diagram Measurement

Eye Diagram Measurement Scheme

*Other names and brands may be claimed as the property of others

14

Noise Breakdown Example

Linearity Example: Single Ended What is Linearity Indicator (LI)??

$L.I{BH}^{1st} = \frac{\Delta E H_{BI}^{1st} + \Delta E H_{SSO}^{1st} + \Delta E}{\Delta E H_{AB}}$	H ^{lx} Xmlk
$L.I{BH}^{2nd} = \frac{\Delta E H_{BI}^{2nd} + \Delta E H_{SSO}^{2nd} + \Delta E}{\Delta E H_{AB}}$	H ^{2nd} Xtalk

If you are doing SI-only or PI-only Sim/Analysis and

- L>1 : you are overestimating noise
 - <1 : you are underestimating noise

16

Ratio of Eye degradation when analysis is done separately to that when it is done combined.

- 1St order: Only 1 noise generating element
- 2nd order: 2 noise generating elements

LI for SE Signaling Example

Linearity Examples

- It is system dependent
- Linearity goes down with more no. of SSO bits

18

As the frequency of operation goes up, the linearity suffers. Designer could underestimate noise impact @ higher frequency of operation

Differential SI-PI Eye Example

Pseudo-differential buffers driving differential channel
More linear than Single ended in this example

Diff. Signaling Linearity Example

- L.I. for Differential Channel is ~ 0.9 ie. It is close to 1
- It implies that when SI/PI co-simulations are done, the EYE margin reduction is still more, than that compared to if it is done separately. However, the impact is smaller. (compared to single ended)

ZU

LI for Differential Signaling Example

Differential signaling channel has LI close to ~1 Might not need SI-PI

Differential SI-PI Noise Breakdown Example

 Differential channel receiver eye's 1st order and 2nd order Noise interactions are more linear
 *other names and brands may be claimed as the property of others

22

IBIS Requirements

- Accuracy
 - SI
 - Pl
 - Icc(t)
 - SI-PI co-simulation
 - Single Ended
 - Differential: Support is critical
- Convenience
 - Automation
- Multiple Domain Power
 - Support is critical

Summary

- Running separate SI and PI simulations may underestimate the Eye Degradation
- Full time domain simulations for the system (end to end models required)
- Linearity Indicator
- Single Ended and Differential Systems are evaluated with SI/PI analysis
 - Single Ended Channel L.I.~ 06 to 0.9
 - Differential Channel L.I.~ 0.9
 - For both scenarios, the combined analysis shows more Eye degradations than separate ones. But the effect is more prominent for Single ended channel.

Backup

SI-PI Compatible Behavior Model

Behavioral model construction for SI-PI co-simulation

SI-PI co-simulation compatible model with variable currents with variable power node voltages

26 (intel)

Simulation for ISI, Cross-talk, and SSO Profiling

Forced Stimulus Setups for SI-PI Co-simulation					
	Case #	ISI	Cross-talk	SSO	
181	1	Minimal	Minimal	Minimal	
	2	Yes	Minimal	Minimal	
880, 181	3	Minimal	Minimal	Yes	
	4	Yes	Minimal	Yes	
Cross-talk, 181	5	Minimal	Yes	Minimal	
	6	Yes	Yes	Minimal	
Cross-talk, ISI, SSO	7	Minimal	Yes	Yes	
	8	Yes	Yes	Yes	

2/4/2010

Simulation for ISI & Minimal ISI

One rising edge & One falling edge

2/4/2010

SI-PI Interaction

Noise Breakdown Example

Differential SI-PI Noise Breakdown Example

• Differential channel receiver eye's 1st order and 2nd order Noise interactions are more linear

Other names and brands may be claimed as the property of others

31

Noise Breakdown Example

SI-PI General Flow

LI 1/2

LI (2/2)

$$\begin{split} \Delta EH_{SSO}^{2nd} &= EH_{CuseH6} - EH_{CuseH8} \\ \Delta EW_{SSO}^{2nd} &= EW_{CuseH6} - EW_{CuseH8} \\ \Delta EH_{SI}^{2nd} \\ \Delta EH_{SI}^{2nd} \\ \Delta EH_{SI}^{2nd} &= EH_{CuseH7} - EH_{CuseH8} \\ \Delta EW_{SI}^{2nd} &= EW_{CuseH7} - EW_{CuseH8} \\ \Delta EW_{SI}^{2nd} &= EW_{CuseH7} - EW_{CuseH8} \\ \Delta EH_{AB} \\ \Delta EH_{AB} \\ \Delta EH_{AB} \\ \Delta EH_{AB} \\ &= EH_{CuseH1} - EH_{CuseH8} \\ \Delta EW_{AB} &= EW_{CuseH1} - EW_{CuseH8} \\ L.I._{BH}^{1st} &= \frac{\Delta EH_{SI}^{1st} + \Delta EH_{SSO}^{1st} + \Delta EH_{Zuik}^{1st}}{\Delta EH_{AB}} \\ L.I._{BH}^{1st} &= \frac{\Delta EH_{SI}^{1st} + \Delta EH_{SSO}^{1st} + \Delta EW_{Zuik}^{1st}}{\Delta EW_{AB}} \\ L.I._{BH}^{1st} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SSO}^{2nd} + \Delta EH_{Zuik}^{2nd}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SIO}^{2nd} + \Delta EH_{SIO}^{2nd} + \Delta EH_{ZUik}^{2nd}}}{\Delta EH_{AB}} \\ L.I._{BH}^{2nd} &= \frac{\Delta EH_{SI}^{2nd} + \Delta EH_{SIO}^{2nd} + \Delta EH_{SIO}^{2nd}$$

