Pin-Pair Oriented Extraction Method for Differential Pair IBIS Modeling

Lance Wang (Iwang@iometh.com) IBIS Summit DesignCon 2010 February 4th, 2010

Outline

- Motivations
- Pin-Pair Oriented Extraction Method
- Test case and Correlations
- Conclusions

Motivations

- Differential-pair buffers are used popularly for High-Speed data-transfer designs
- IBIS is good for Pseudo differential-pair buffer by using [Diff Pin]
- Current introduced extraction methods are not easy or accurate for "True" differential-pair cases; And not all EDA tools support the models using additional features other than [Diff Pin]
- The expectations for new method
 - Easy to extract
 - All EDA tools support it if it supports basic IBIS models
 - Acceptable accuracy

Pin-Pair Oriented Extraction Method

$$I_{load} = I_p - I_n$$

The way to use differential pair signal is to monitor the subtracted currents between Positive-pin and Negative-pin.

The Pin-Pair Oriented Extraction method is following this real situation to focus on the subtracted currents rather than each separated pin currents.

Pin-Pair Oriented Extraction Method

IBIS V-I data is used in the simulations as:

lout = lpu + lpd + lpc + lgc

Where:

- *lout :* the current on the pad;
- *I*_{pu}: the current from Pullup data table
- *Ipd :* the current from Pulldown data table
- *I_{pc}* : the current from Power clamp data table
- Igc : the current from Ground Clamp data table

All IBIS currents are the function (table lookup) results in the IBIS V-I data tables. They are:

$$Ipu = f(Vpu)$$

$$Ipd = f(Vpd)$$

$$Ipc = f(Vpc)$$

$$Igc = f(Vgc)$$
So: Iout = f(Vpu) + f(Vpd) + f(Vpc) + f(Vgc)

Pin-Pair Oriented Extraction Method

IBIS differential current should be:

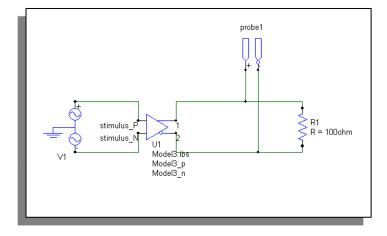
Iload = Ip - In = fp(Vpu, Vpd, Vpc, Vgc) + fn(Vpu, Vpd, Vpc, Vgc) + Idiff
Where fp(V..) is the V-I function for single-end Positive-pin. fn(V..) is the V-I function for single-end Negative-pin.
Idiff is the differential mode current between diff pin pairs internally.

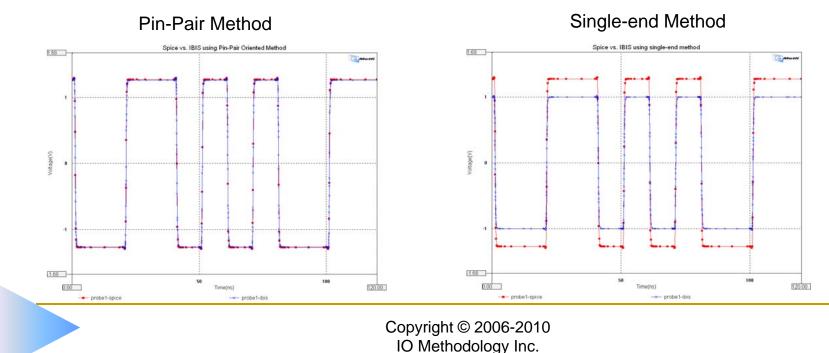
We can put Idiff into both IBIS current curves

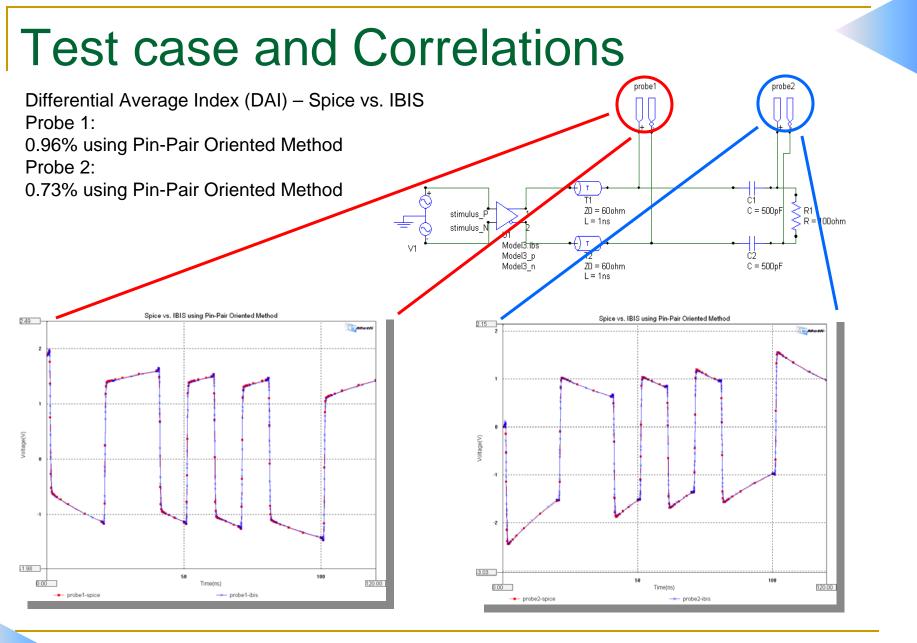
 $Iload = Ip - In = (fp(V..) + Idiff_partial_p) + (fn(V..) + Idiff_partial_n)$ $= fp_combined(V..) + fn_combined(V..)$

 The condition is to extract both pins at the same time in the real working condition!

Example of V-I curves with Idiff embedded


Copyright © 2006-2010 IO Methodology Inc.


Test case and Correlations


Differential Average Index (DAI) – Spice vs. IBIS Probe 1:

0.63% using Pin-Pair Oriented Method

10.55% using Single-end extraction method

Conclusion

- Pin-Pair Oriented Extraction method is a straight forward method for differential pair IBIS buffer extractions.
- It is accurate and easy to operate.
- It uses the same IBIS basic syntax but combines differential current in both Pos/Neg IBIS I-V curves. It works for all simulators that support IBIS basic models.
- Both Pos/Neg IBIS buffer models need to be used at the same time for differential pair applications. It may not be accurate if it is out of the condition when extracted.

The High-Speed Design Utility Tool and Service Provider www.iometh.com