Predicting BER with IBIS-AMI: experiences correlating SerDes simulations and measurement

Todd Westerhoff (SiSoft)

Mike Steinberger (SiSoft) Walter Katz (SiSoft) Barry Katz (SiSoft) Adge Hawes (IBM) Kent Dramstad (IBM)

IBIS Summit @ DesignCon 2010 February 4, 2010

Agenda

- IBIS-AMI Overview
- IBM's IBIS-AMI Models
- Correlation Methodology
- Correlation Results w/o Jitter/Noise
- Jitter / Noise Modeling & Extrapolation
- IBIS-AMI Performance

The SerDes Simulation Problem

- ✓ Model SerDes EQ & CDR
- ✓ Simulate >10M bits
- ✓ Predict BER
- ✓ Models run in multiple tools

• SPICE

- Low simulation throughput
- Open-source tools
 - No vendor models
- Vendor tools
 - Limited interoperability
- EDA Tools
 - Proprietary models (Before IBIS-AMI)

Standardizing SerDes Modeling

Goal: create a open modeling standard SerDes for SerDes PHYs that provides:

- Interoperability: different vendor models work together
- Transportability: one model runs in multiple simulators
- Performance: comparable to vendor simulators
- Accuracy: comparable to vendor simulators
- IP Protection: accurate models without divulging internal architectural details

IBIS <u>A</u>lgorithmic <u>M</u>odeling <u>Interface</u> (IBIS-AMI)

Channel simulation (end to end channel)

- Part of IBIS 5.0 specification
- Divides serial link analysis into two steps
 - Network characterization
 - Derives impulse response for unequalized analog network
 - Channel simulation
 - Analyses end-end link
- IBIS-AMI models have two parts
 - Analog model
 - Algorithmic model

IBIS-AMI Algorithmic Models

- Supplied as binary code (.DLL) that gets linked into the Channel Simulator at runtime
- Standardized entry points and data passed to/from the model
- Control (.AMI) file lists what features the model supports & what controls the user can set

Variable:	Type:	Value 1:
RX1:Table.dfe.1	Tap	0.0
RX1:agcgain	Float	0.0
RX1:dfeadaptoff	Integer	0
RX1:dfeoff	Integer	0
RX1:freqofs	Float	1.00e-4
RX1:rotlin	String	.J.J.J.J.J.Jsi_lib/spice/io
TX1:Tx_Strength	String	Tx Pow Reg 115 = 1.00
TX1:Table.ffe1	Тар	.0
TX1:Table.ffe.0	Тар	0.7
TX1:Table.ffe.1	Тар	-0.3

IBIS-AMI Channel Simulation

- Statistical Simulation
 - Computes eye statistics directly (no stimulus/waveform)
 - Models linear equalization
 - 1st order CDR model
- Time-Domain Simulation
 - Specific input stimuli, waveform output
 - Models DFE, adaptive equalization
 - Detailed CDR behavior
 - Simulates ~1,000,000 bits/minute

IBM Modelling Strategy

- Create a common set of models that can be configured to support multiple process nodes and technologies
- Use existing broadband characterization data for analog models
- Leverage existing code in HSSCDR where possible
- Models are not made public, but are freely available to customers

IBM Modelling Strategy (contd.)

- Previous models have included Spice, VHDL, Verilog-AMS, and others
- Present strategy supports IBIS-AMI and in-house HSSCDR proprietary simulator
- Core hardware is correlated in lab to HSSCDR
 HSSCDR only supports IBM hardware
- HSSCDR and AMI code closely linked

IBM HSSCDR Simulator

- Standalone channel analyzer and simulator
 - Channel analysis of on-chip parasitics and customer channels
 - Time-domain simulation at approximately 1 million bits/minute
 - Post-processing BER analysis down to 10⁻²² errors

IBM HS	-S Link Simulate	N 5.3.90	
Tatasarahas	Oanal	Fermer	Dapatrian .
Care	Silve 2	Gae	a den
HEER 3	1	HIIN 3	1° Ingulas
Options	Bores Over	Options	14 Presency
a toma a	2" Insu cond + 194220 +	be chana 🖬	19 EyeDepter
	4"7,403-14M2D + 2"		(" Cystraight
(+)		Televise	(" Test
- Blue	Con Data	a4 *	C SUPPORT
	-	Core .	1001101000
Normani +		Nord .	
	Feasibly		
Teenstolan	1.000	Turninatari	Lopest
trandeus a baid o ba	Data Farm Clairy	Ingenierania Read to Re-	124534
120 million for		- paintein fia	17. Now
		-	Agrend
Passage	Number of Disc.	Package	r beginse
Name Comments	1089008	hinds and a	tys Detert fields
			# Parloth
Systemati Denulleter Conve	and too Switcher	Enco Cardigantas	C Rallighted
citritegeo(7)		Land Contigention Pile	C ToPagOupur

IBIS-AMI Model Parameters

- IBIS-AMI models expose same simulation controls as HSSCDR
- Make comparing results easier & simplified migration process

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 11

Correlating Simulation Results

IBIS-AMI Simulator

• How to ensure analysis conditions are identical?

- Which outputs can be compared to which?
- What level of correlation is reasonable?
- Which behaviors are simulated?
- Which behaviors are extrapolated?

Simulation Elements

- 1. Channel Model
- 2. Analog Model (Impedance, Capacitance)
- 3. Algorithmic Model (EQ / Clock Recovery)
- 4. Stimulus

- 5. Post-processing: data / clock processing and presentation
- 6. Noise sources, extrapolation, noise processing

HSSCDR Visibility

Waveform @ RX Pad

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 14

© 2010, IBM, SiSoft. All Rights Reserved

HERCOR "Kaw" Output

Correlation Strategy

- Correlate everything up to the RX pad by overlaying waveforms
 - TX output impedance, slew rate, voltages
 - TX equalization
 - Channel model
- Correlate RX behavior based on eye height / width at different probability levels
- Include jitter / noise sources once TX / channel / RX behaviors are correlated
- Target correlation was within 5% of margins predicted by HSSCDR

TX Analog Driver Correlation

- Correlate analog (unequalized) TX model
 - Slew rate
 - Output impedance
 - Voltage level
- Simulation conditions
 - 6.25 Gb/s
 - TX EQ = Off
 - TXPOW = 115
 - Jitter = 0
 - WC, NC, BC Corners
 - 1000 cycles simulated

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 16

© 2010, IBM, SiSoft. All Rights Reserved

TX Output Swing Correlation

- Correlate TX power settings
- Simulation conditions
 - 6.25 Gb/s

- TX EQ = Off
- TXPOW = 29, 58, 86,115, 127
- Jitter = 0
- NC Corner
- 1000 cycles simulated

SiSoff

Predicting BER with IBIS-AMI – DesignCon 2010 – February 4, 2010 – 17

TX Equalization Correlation

- Correlate TX algorithmic model EQ
 - Slew rate
 - Voltage levels
- Simulation conditions
 - 6.25 Gb/s
 - 4 TX EQ settings
 - TXPOW = 115
 - Jitter = 0
 - NC Corner
 - 1000 cycles simulated

% SiSoff

TX / Channel Correlation

- Correlate full TX with full passive channel
 - TX with equalization
 - Packages + channel
 - Voltages and reflections
- Simulation conditions
 - 6.25 Gb/s

•

- TX EQ = -0.05, 0.7, -0.3, 0.05
- TXPOW = 115
- Jitter = 0
- NC Corner
- 5000 cycles simulated

SiSoff

Predicting BER with IBIS-AMI – DesignCon 2010 – February 4, 2010 – 19

Correlating RX Eye Height / Width

 Requires combining recovered clock & equalized data behaviors to determine eye margin

RX Correlation Results

AMI 1E-6

HSSCDR Output

HMIN -31.0% HMAX 33.5%HEYE 62.0% 10^-3HMIN -28.6% HMAX 30.9%HEYE 57.1% 10^-6HMIN -28.0% HMAX 30.3%HEYE 56.0% 10^-9HMIN -27.8% HMAX 29.7%HEYE 55.5% 10^-12HMIN -27.5% HMAX 29.1%HEYE 55.1% 10^-15

VMIN 71.9% VMAX 112% VEYE 117mV 10^-3 VMIN 66.0% VMAX 117% VEYE 108mV 10^-6 VMIN 63.2% VMAX 119% VEYE 103mV 10^-9 VMIN 62.1% VMAX 120% VEYE 101mV 10^-12 VMIN 61.2% VMAX 121% VEYE 99.8mV 10^-15 Simulated Extrapolated

	AMI Eye Width	HSSCDR Eye Width	%	AMI Eye Height	HSSCDR Eye Height	%
1E-3	105ps	103ps	+1.9%	118mV	117mV	+0.9%
1E-6	92.7ps	95ps	-2.4%	107mV	108mV	-0.9%

SiSoff

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 21

Jitter and Noise Modeling

HMIN -31.0% HMAX 33.5% HEYE 62.0% 10^-3 HMIN -28.6% HMAX 30.9% HEYE 57.1% 10^-6 HMIN -28.0% HMAX 30.3% HEYE 56.0% 10^-9 HMIN -27.8% HMAX 29.7% HEYE 55.5% 10^-12 HMIN -27.5% HMAX 29.1% HEYE 55.1% 10^-15 VMIN 71.9% VMAX 112% VEYE 117mV 10^-3 VMIN 66.0% VMAX 117% VEYE 108mV 10^-6 VMIN 63.2% VMAX 119% VEYE 108mV 10^-9 VMIN 62.1% VMAX 120% VEYE 101mV 10^-12 VMIN 61.2% VMAX 121% VEYE 99.8mV 10^-15

- IBIS-AMI simulations are typically 1M-50M bits long to characterize
 - Intersymbol interference (Dj)
 - TX DCD / channel
 - Crosstalk
- Random (unbounded) behaviors are best handled as budgets
- Channel simulators combine simulated & budgeted data to predict behavior at target design reliability levels

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 22

Jitter / Noise Modeling in HSSCDR

Troy Beukema, "Challenges in Serial Electrical Interconnects at 5 to 10 GB/s and Beyond", IEEE SSCS, 2007

Predicting BER with IBIS-AMI – DesignCon 2010 – February 4, 2010 – 23

© 2010, IBM, SiSoft. All Rights Reserved

& SiSoff

Jitter / Noise Modeling in AMI Simulator

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 24

© 2010, IBM, SiSoft. All Rights Reserved

SiSoff

Eye margins match within target tolerances

Predicting BER with IBIS-AMI - DesignCon 2010 - February 4, 2010 - 25

© 2010, IBM, SiSoft. All Rights Reserved

Simulation Performance

	HSSCDR	AMI	
100K bits	43 sec	34 sec	
1M bit	3 min 48 sec	3 min	
10M bits	35 min 4 sec	28 min 50 sec	

- IBIS-AMI provides performance on par with vendor simulation tools
- Simulations run on Dell D820 laptop, 2GHz T7200 CPU, 2 GB RAM

Summary

Channel simulation (end to end channel)

- IBIS-AMI simulation is a two step process
 - Network characterization
 - Channel simulation
- Channel simulation modes
 - Statistical simulation
 - Time-domain simulation
- IBIS-AMI models provide
 - Interoperability
 - Transportability
 - Performance
 - Accuracy

