Using IBIS-AMI in COM Analysis

DesignCon IBIS Summit
Santa Clara, California
February 2nd, 2018

Wei-hsing Huang, SPISim
Wei-hsing.Huang@spisim.com
Agenda:

• Motivation
• Background
• Using AMI in COM Flow
• Results
• Summary
• Q & A
Motivation

• **AMI model development**:
 o Model is not an executable, it needs driver
 o Spawn child (simulation) processes is tricky to debug
 o Optimization/flow is beyond model developer’s control

• **Open source link-analysis platforms**
 o Includes useful building blocks (e.g. Figure of Merits, BER)
 o Mostly use generic Tx/Rx EQ blocks/algorithms
 o Can be adapted to use IBIS-AMI models
 o Can shorten AMI modeling design cycle
 o E.g. COM (1), (2) & PyBERT (3)
Background 1/3

• COM (Channel operating Margin)
 o Is a IEEE 802.3bj Spec (Annex 93A)
 o Published codes, well documented and maintained
 o Is a simplified version of BER analysis
 o Figure of merit based channel optimization and analysis
 o Jitter, Noise etc are also included

\[COM = 20 \log_{10} \left(\frac{A_2}{A_{n1}} \right) \]
Background 2/3

- COM has channel components and conditioning algorithms

\[H_{tot}(f) \]

\[H_{21}(f) = s21(f) \]

- Use FOM to find FFE, CTLE settings, then apply DFE for BER

- Single-bit-response based
• COM use exhaustive search for FFE + CTLE (4)
 o Generic implementations
 o CTLE is gdc only
 o DFE is not optimized together
Use AMI models in COM 1/2

Original COM flow

Package iteration loop
CTLE gdc iteration loop
FFE taps iteration loops
FOM Calculation
DFE
AMI_INIT call to CTLE (Rx)
AMI_INIT call to FFE (Tx)
Array/optimization control loops
FOM Calculation
DFE
Modified COM flow using AMI_Init
Use AMI model in COM 2/2

Modified COM flow using AMI_GetWave (Bit-by-bit)

- Use loadlibrary mechanism
- AMI parameters can be pre-assembled
- Example library loading/calling in COM

```matlab
mex -setup
load('SPIsimAMI_WIN64.dll', 'ami.h')
libisloaded('SPIsimAMI_WIN64')
calllib('SPIsimAMI_WIN64', 'ami_init', hInput, rowSize, numAggr...)
unloadlibrary('SPIsimAMI_WIN64')
```
Example Results 1 \((6), (7)\)

- Replace COM’s FFE with self-optimization FFE
Example Results 1

- 13 gdc * 24 FFE sweep (red) vs customized FFE (blue)
Example Results 2

- 13 gdc * 24 FFE sweep (red) vs customized FFE (blue)
Summary:

● AMI model can be used in COM analysis:
 ○ COM is a great open platform for link analysis/AMI development
 ○ Replaces multi-level CTLE and FFE loop with AMI call
 ○ Can pull-in DFE for co-optimization

● Considerations:
 ○ Original COM flow supports AMI_Init type LTI only
 ■ AMI_GetWave based flow needs SBR ∘ BitStream first
 ○ AMI parser is not necessarily needed
 ■ Parameters can be pre-assembled as strings
 ○ Can be used for back-channel analysis development
References:

1. IEEE Std 802.3bj-2014, Specification, Annex 93A
2. Channel Operating Margin (COM), Richard Mellitz, DesignCon 2013
3. PyBERT: https://pypi.python.org/pypi/PyBERT
5. IBIS V6.1 Spec. Section 10 http://ibis.org/ver6.1/
6. New SI Techniques for Large System Performance Tuning, Donald Telian, DesignCon 2016
7. Sam Palermo, ECEN 720, High-Speed Link Circuits & Systems, Texas A&M
Q & A
EDA Expertise in Signal, Power Integrity & Simulation