Interconnect Task Group Report
with BIRD189.5 Overview

Michael Mirmak
Intel Corporation
michael.mirmak@intel.com

IBIS Summit at DesignCon 2018
Santa Clara, CA, USA
February 2, 2018

With additional content by Mike LaBonte, Signal Integrity Software (SiSoft) and Bob Ross, Teraspeed Labs
Agenda

- History
- Principles of the Interconnect Proposal
 - Structure
 - Fundamental Keywords
 - Terminals, Models, Sets, and Groups
- What Has Changed Since DesignCon 2017
- Summary and Next Steps
Status Overview

- The Interconnect Task Group has been developing this proposal since 2014
 - BIRD189.4 was submitted to the Open Forum, but is now out-of-date
 - http://www.ibis.org/birds/
 - BIRD189.5 is in the final stages of preparation
 - http://www.ibis.org/interconnect_wip/ (as Draft 16)
 - Expected to be submitted to Open Forum in February 2018
- Intended for IBIS Version 7.0

Key changes in draft BIRD189.5 are summarized below
Features of the Interconnect Proposal

- Supports:
 - IBIS-ISS and Touchstone models (common in industry)
 - Both I/O and supply (POWER and GND) connections
 - (New) optional Die pad interface between Pins and Buffers
 - I/O pin_names as terminal qualifiers
 - May have optional Aggressor_Only designation
 - POWER and GND terminal qualifiers by pin_name, pad_name, signal_name or [Pin Mapping] bus_label for rail connections with direct or combined terminals

- Many other features not covered here

This approach links IBIS packages to common industry interconnect modeling data formats
Terminals at Buffer, Die Pad and Pin Interfaces

Original IBIS (4.0 and earlier)
- Pins are explicit
- Buffer terminals implicit in [Model]
- Die pad terminals same as buffer terminals
- Packages defined connections between pins and buffers

Current Proposal
- Die pad terminals are now explicit
- Buffer terminals are now explicit
- [Pin]s are…. still pins
- Separate interconnect definitions can be created between …
 - Pin-to-Die pad terminals,
 - Die pad-to-Buffer terminals,
 - Pin-to-Buffer terminals (still) supported
Keywords and Subparameters
(Limited Discussion Here)

- [Bus Labels] | available for most keywords
- [Die Supply Pads] | pad_name, optional bus_label
- [Interconnect Model]/[End Interconnect Model]
 - Unused_port_termination <Open | Ref. | Res.> | Unused port ref. Z
 - Param | parameter passing
 - File_IBIS-ISS | names IBIS-ISS file
 - File_TS | names Tstone file
 - Number_of_terminals=<value> | number of terminals
 - <terminal lines> | described later
- [Interconnect Model Set]/[End Interconnect Model Set]
- [Interconnect Model Set Group]/[End Interconnect Model Set Group]
 - New and changed from “Selector”
[Interconnect Model]

- Connections between terminals with IBIS-ISS or Touchstone files
- Terminal connection points at Buffer, Die pad, or Pin interfaces
- Identifies rail or I/O terminals
- Allows pin_name, signal_name, pad_name, or bus_label terminal qualifiers for rails (and pin_name for I/O terminals)
- Identifies whether a coupled signal is only an aggressor or also “experiences” coupling from other sources

How package and on-die electrical information is generated and delivered today
[Interconnect Model Set]s
[Interconnect Model Set Group]s

- [Interconnect Model Set] <set_name>
 - Encapsulates one or more Interconnect Models

- [Interconnect Model Group] <group_name>
 - Names one or more Interconnect Model Sets to be used together
 - Used to establish a complete path for selected buffers
 - <group_name> helps identify buffers selected for simulation

- Some Example Groupings and Applications
 - Separate groups: one per interface (e.g., memory, network)
 - Separate groups for coupled vs. single-line simulations
 - Different sets for different power delivery network complexities
 - POWER connected at single pin, single buffer terminal
 - POWER connected through multiple pins, rails to individual buffer terminals
Models Are Grouped Hierarchically

[Interconnect Model Group] Group 1

[Interconnect Model Set] Set1

[Interconnect Model] ICM1a

[Interconnect Model] ICM1b

[Interconnect Model Set] Set2

[Interconnect Model] ICM2a

[Interconnect Model] ICM2b

[Interconnect Model Group] Group 2

[Interconnect Model Set] Set2

[Interconnect Model] ICM2a

[Interconnect Model] ICM2b
Key Changes in Latest Draft

- Clarification of Aggressor_Only treatment
 - Not all crosstalk in possible the physical design will be represented in the model for terminals labeled “Aggressor_Only”

 Terminal_type qualifiers and, here, pin names
 (e.g., model terminal 1 is associated with pin 2)

- The model maker is informing the user and tool that all potential crosstalk is included in the model for Pin 3
 - Both what it generates and what it is subject to
A_gnd Added

- A_gnd is an optional declaration available for any terminal
 - This formally adds “ground” to the same hierarchy level as pin, die pad and buffer

- This permits simulator reference (ideal node 0) to be connected to any point
 - A_gnd may be used any number of times with IBIS-ISS files
 - A_gnd may only be used once for Touchstone files, for the N+1th terminal
An A_gnd Example

- An 8-port S-parameter in a 9-terminal structure

[Interconnect Model Set] Full_TS_IO_A_gnd_reference

[Interconnect Model] Full_TS_IO_A_gnd_reference

File_TS full_ts_buf_pin_io.s8p

Number_of_terminals = 9

Full_TS_IO_A_gnd_reference

1 Pin_I/O pin_name A1 | DQ1 | DQ
2 Pin_I/O pin_name A2 | DQ2 | DQ
3 Pin_I/O pin_name A3 | DQ3 | DQ
4 Pin_I/O pin_name A4 | DQ4 | DQ
5 Buffer_I/O pin_name A1 | DQ1 | DQ
6 Buffer_I/O pin_name A2 | DQ2 | DQ
7 Buffer_I/O pin_name A3 | DQ3 | DQ
8 Buffer_I/O pin_name A4 | DQ4 | DQ
9 A_gnd | Reference terminal

[End Interconnect Model]
[End Interconnect Model Set]
Other Recent Changes

- Unused_port_termination is back and extended
 - “Resistance” added, with numerical argument
 - Supports tool termination to defined single value of resistance

- Used with Touchstone files
 - Unused_port_termination <Open | Reference | Resistance>
 - Reference: reference impedance reduces the number of Touchstone ports through matrix reduction
 - Open: represents the physically disconnected port
 - EDA tools might still provide an interface to override the choices

Examples:
Unused_port_termination Open
Unused_port_termination Reference
Unused_port_termination Resistance 43.5
Summary and Next Steps

- BIRD189.5 is intended to improve IBIS package modeling
 - Flexibly supports crosstalk, loss, and existing modeling formats
- Formalizes and separates Die pads and Buffers
- Targeted for February 2018 completion by Interconnect Task Group and Open Forum submission

Comments are welcome! Help enable an advanced Interconnect format for IBIS Version 7.0!
BACKUP
[Interconnect Model] for Buffer-to-Die Pad Side

[Interconnect Model Set] Full_ISS_PDN

| [Interconnect Model] Partial_ISS_buf_pad |

File_IBIS-ISS buf_pad.iss buf_pad_2_typ

Number_of_terminals = 10

1 Pad_I/O pin_name A1 | DQ1 (DQ signal)
2 Pad_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with pad_names and pin_names
3 Pullup_ref pin_name A1 | VDD (POWER connection)
4 Pulldown_ref pin_name A1 | VSS (GND connection)
5 Buffer_I/O pin_name A1 | DQ1 (DQ signal)
6 Pullup_ref pin_name A2 | VDD (POWER connection)
7 Pulldown_ref pin_name A2 | VSS (GND connection)
8 Buffer_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with signal_names
9 Pad_Rail pad_name VDDQ | VDD POWER
10 Pad_Rail pad_name VSSQ | VSS GND

[End Interconnect Model]
The [Die Supply Pads] keyword establishes pad_name <Qualifier_entries> for rails, and associates them with signal_name (and optionally with bus_label entries)

<table>
<thead>
<tr>
<th>pad_name</th>
<th>signal_name</th>
<th>bus_label</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDDQ</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>VSSQ</td>
<td>VSS</td>
<td></td>
</tr>
</tbody>
</table>
[Interconnect Model] for Buffer-to-Die Pad Side (Expanded)

[Interconnect Model Set] Full_ISS_PDN

[Interconnect Model] Partial_ISS_buf_pad

File_IBIS-ISS buf_pad.iss buf_pad_2_typ

Number_of_terminals = 10

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pad_I/O</td>
<td>pin_name</td>
</tr>
<tr>
<td>2</td>
<td>Pad_I/O</td>
<td>pin_name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pullup_ref</td>
<td>pin_name</td>
</tr>
<tr>
<td>4</td>
<td>Pulldown_ref</td>
<td>pin_name</td>
</tr>
<tr>
<td>5</td>
<td>Buffer_I/O</td>
<td>pin_name</td>
</tr>
<tr>
<td>6</td>
<td>Pullup_ref</td>
<td>pin_name</td>
</tr>
<tr>
<td>7</td>
<td>Pulldown_ref</td>
<td>pin_name</td>
</tr>
<tr>
<td>8</td>
<td>Buffer_I/O</td>
<td>pin_name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pad_Rail</td>
<td>pad_name</td>
</tr>
<tr>
<td>10</td>
<td>Pad_Rail</td>
<td>pad_name</td>
</tr>
</tbody>
</table>

[End Interconnect Model]
[Interconnect Model Set Group] for a Selected Group

<table>
<thead>
<tr>
<th>Interconnect Model Set Name</th>
<th>File_reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full_ISS_PDN</td>
<td>NA</td>
</tr>
</tbody>
</table>

[End Interconnect Model Set Group]

[Interconnect Model Set Group] is at same level as [Package Model] for selected group of Buffer_IO pin(s)

Name should be descriptive for easy selection (e.g., A1-A2_PDN)

Can contain several references to [Interconnect Model Set]s

Sets can be in the .ibs file (NA) or in a separate directories

[Interconnect Model]s within a Group must be connected
Complete [Interconnect Model Set] With Both [Interconnect Model]s

[Interconnect Model Set] Full_ISS_PDN
[Interconnect Model] Partial_ISS_buf_pad
File_IBIS-ISS buf_pad.iss buf_pad_2_typ
Number_of_terminals = 10

1 Pad_I/O pin_name A1 | DQ1 (DQ signal)
2 Pad_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with pad_names and pin_names
3 Pullup_ref pin_name A1 | VDD (POWER connection)
4 Pulldown_ref pin_name A1 | VSS (GND connection)
5 Buffer_I/O pin_name A1 | DQ1 (DQ signal)
6 Pullup_ref pin_name A2 | VDD (POWER connection)
7 Pulldown_ref pin_name A2 | VSS (GND connection)
8 Buffer_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with signal_names
9 Pad_Rail pad_name VDDQ | VDD POWER
10 Pad_Rail pad_name VSSQ | VSS GND

[End Interconnect Model]

[Interconnect Model] Partial_ISS_pad_pin_2
File_IBIS-ISS pad_pin.iss pad_pin_2_typ
Number_of_terminals = 8

1 Pin_I/O pin_name A1 | DQ1 (DQ signal)
2 Pin_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with signal_names
3 Pin_Rail signal_name VDD | VDD (POWER connection)
4 Pin_Rail signal_name VSS | VSS (GND connection)
5 Pad_I/O pin_name A1 | DQ1 (DQ signal)
6 Pad_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with pad_names
7 Pad_Rail pad_name VDDQ | VDD is signal name
8 Pad_Rail pad_name VSSQ | VSS is signal name

[End Interconnect Model]

[End Interconnect Model Set]
<Terminal lines> Syntax

- All column entries on one line:

 `<Terminal_number> <Terminal_type> <Terminal_type_qualifier> <Qualifier_entry> [Aggressor_Only]`

- `<Terminal_number>` is IBIS-ISS node position or Touchstone port number

- Allowable `<Terminal_type>` names and associations next
Allowable `<Terminal_type>` Associations

<table>
<thead>
<tr>
<th><code><Terminal_number></code></th>
<th><code><Terminal_type></code></th>
<th><code><Terminal_type_qualifier></code></th>
<th><code><Qualifier_entry></code></th>
<th><code>Aggressor_Only</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin_I/O</td>
<td>X</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Pad_I/O</td>
<td>X</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Buffer_I/O</td>
<td>X</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Pin_Rail</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Pad_Rail</td>
<td>Y</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Buffer_Rail</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullup_ref</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulldown_ref</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power_clamp_ref</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnd_clamp_ref</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext_ref</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_gnd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`<Qualifier_entry>`: ”X” I/O pin_name; “Y,” or “Z”: POWER or GND name. Optional “A”: “Aggressor_Only”
Why Update Interconnect Modeling?

- Improve package models with IBIS-ISS (an HSPICE subset) and Touchstone support
 - Package modeling in IBIS stable since 2000
 - [Pin], [Package], [Package Model]
 - [Alternate Package Models] selector added
 - Limited support of loss, crosstalk and/or partitioning

- EBD (Electrical Board Description) for boards; No coupling and limited package model application

- IBIS, IBIS-ISS, Touchstone 2.0 and ICM are separate specifications
 - Limited interaction between them for package modeling
 - ICM (Interconnect Model) never adopted by industry