

DDR5 Equalization Options with IBIS

Arpad Muranyi Mentor Graphics, A Siemens Business

IBIS Summit, DesignCon February 2, 2018 Santa Clara, CA

Background

- DDR Equalization is a hot topic as data rates keep going up
- Engineers are looking for simulation solutions
 - What kind of equalizations are needed?
 - Tx: FIR; Rx: CTLE, FFE, DFE, etc.
 - What types of effects need to be simulated?
 - Simultaneously Switching Output (SSO), Power Delivery (PDN), Single Ended, Differential signaling effects, Crosstalk, etc...
 - What kind of models can include all these effects?
 - Is the statistical modeling/simulation approach needed?
- A good example for such conversations is an [SI-List] email thread with the subject line "EQ for DDR5" that started in October 2017 <u>https://www.freelists.org/post/si-list/EQ-for-DDR5#footer</u>

Is IBIS-AMI a viable option?

- IBIS-AMI can simulate practically any filter
 - Simulations are extremely fast, millions of bits in seconds or minutes
- Its fundamental assumption is that the channel (including the buffers on the ends) is Linear and Time Invariant (LTI)
 — This excludes SSO, PDN and other time varying effects
- IBIS-AMI also assumes that rising and falling edges are symmetric
- It was conceived with SerDes topologies in mind
 - SerDes is point-to-point, DDR has a controller and several memory chips
 - SerDes uses embedded clocks (and CDR), DDR uses a separate clock input
- IBIS-AMI is tailored for differential signaling
 - DDR uses single ended and differential signals

If not IBIS-AMI, what else could be considered?

- Good old SPICE transistor level models
 - Don't even think about it, they are so slow... \odot
- StatEye, Matlab, Python, etc...
 - Your mileage may vary, lack of standardization, etc...
- At least one "very large IC vendor" started releasing an increasing number of Verilog-A behavioral buffer models in recent times
- Most major EDA vendors provide support for Verilog-A models
 Transparent to the user, no need to manually compile the models
- Verilog-A is available as a modeling language extension in IBIS since v4.1 (2004)
 - [External Model] or [External Circuit] keywords

Let's look at a Verilog-A example

- <u>Tx:</u> conventional IBIS model from Micron
- <u>Rx:</u> clocked DFE model using IBIS [External Circuit] with Verilog-A

DFE code snippet (declarations, initializations)

```
// From: http://www.ece.tamu.edu/~spalermo/ecen689/lecture8 ee720 rx adaptive eq.pdf
11
// Zk = Yk - W1*D(k-1) \dots - W(n-1)*D(k-(n-1)) - Wn*D(k-n)
11
// where: Y = input
11
       Z = output
11
       D = output of slicer (digital)
   W = tap weight
11
module VA DFE Sngl Clocked(In, Out, ClkInP, ClkInN, PCref, GCref);
 electrical In, Out, ClkInP, ClkInN, PCref, GCref;
 branch (In,GCref) BrCcomp;
 branch (PCref, In) BrRterm;
 parameter real Rterm = 48;
 parameter real Ccomp = 0.88e-12;
 parameter real BitInterval = 0.25e-9;
 parameter real Tap0 = 0.12099;
 parameter real Tap1 = 0.0181078;
 parameter real Tap2 = 0.00692665;
 parameter real Tap3 = -0.0133208;
 localparam integer NoOfTaps = 4;
 real Taps[0:NoOfTaps-1] = {Tap0, Tap1, Tap2, Tap3};
 real CurTime = 0;
 integer Tenable = 0;
 //-----
 integer i = 0;
 integer Bits [0:NoOfTaps-1] = \{0, 0, 0, 0\};
 real Sum = 0:
  //_____
```


DFE code snippet (sampling logic)

DFE code snippet (analog output equations)

- The Verilog-A simulation results are compared against the results obtained from an IBIS-AMI-like simulator
- This simulator works very much like IBIS-AMI, except it uses its own, built-in algorithmic models instead of IBIS-AMI models
- It has some features which are not supported by IBIS-AMI — e.g. it supports asymmetric rising and falling edges
- We will refer to this simulator as "RefSim" on the remaining slides

Results: IBIS + Verilog-A

© 2018 Mentor Graphics Corporation

Results: RefSim

RefSim model	
Bit rate:	4 Gbit/s
Bit pattern:	4 * PRBS7
Total bits:	512
Samples/bit:	32
Ch. char. time:	10.4 sec
Alg. sim. time:	2.4 sec

Red = before DFE Green = after DFE

Overlaying IBIS and RefSim at DFE input

Overlaying IBIS and RefSim at DFE output

Results: IBIS + Verilog-A

14

Results: RefSim

4 Gbit/s
1 * PRBS12
4096
32
12.1 sec
2.0 sec

Red = before DFE Green = after DFE

Overlaying IBIS and RefSim at DFE input

Overlaying IBIS and RefSim at DFE output

Adding jitter to the stimulus of U1.D (DQ0)

Advanced Jitter Settings							×
🗹 Add Gaussian jitter							
Standard Deviation (s):	8	% of UI	\sim	Peak-to-peak:	42.21	% of UI	\sim
Frequency:	1	% of rate	\sim	<> at BER of 10^	-12		
Add uniform jitter							
Peak-to-peak:	0	% of UI	\sim	Mean:	0	% of interval	\sim
Add sinusoidal jitter							
Half of peak-to-peak:	0	% of UI	\sim	Initial phase:	0	degrees	
_				Frequency:	1	% of rate	\sim
Add Tx duty cycle distortic	on						
Peak-to-peak:	0	% of UI	\sim				
Jitter template							
Load Sa	ave	Save As					
				OK	Canc	el Help	1

Results: IBIS + Verilog-A with jitter

Results: RefSim with jitter

Red = before DFE Green = after DFE

Overlaying IBIS and RefSim at DFE input

Overlaying IBIS and RefSim at DFE output

Half way point summary

- RefSim was used to synthesize the DFE tap settings
- These tap settings were used for all IBIS-Verilog-A and RefSim simulations
- Up to this point, the IBIS-Verilog-A and RefSim results match well — These simulations did not include any non-LTI effects
- The simulation time for 512 bits were about the same
 - RefSim spent most of its time on channel characterization
 - The algorithmic simulation time remains very short (almost constant) for few thousand bit simulations
 - The IBIS-Verilog-A simulation time is comparable to normal IBIS simulations, and grows proportionally with the number of bits simulated

Adding a non-ideal PDN model

Rx with DFE

Clock input for the DFE in the Rx model

IBIS + Verilog-A with non-ideal PDN

Power, ground and signal (before DFE) waveforms

with and without PDN

25

IBIS + Verilog-A with non-ideal PDN

Note the asymmetry in the rising and falling edges and the high and low signal levels

RefSim with non-ideal PDN

The channel characterization was performed with step and pulse waveforms

© 2018 Mentor Graphics Corporation

Red = before DFE Green = after DFE

10

RefSim with non-ideal PDN

The channel characterization was performed with a PRBS5 pattern

Red = before DFE Green = after DFE

© 2018 Mentor Graphics Corporation

A. Muranyi, DDR5 Equalization Options with IBIS, February 2018

Overlaying IBIS and RefSim at DFE input (with Step & Pulse channel characterization)

Overlaying IBIS and RefSim at DFE input (with PRBS5 channel characterization)

Final summary

- The simulation results are significantly different when non-LTI effects are present
- This happens because the channel characterization is a "snapshot" of the channel's behavior at a certain time
 - The assumption is that the channel's characteristics do not vary with time
 - In reality, the channel's characteristics may vary with time
 - The PDN effects are just one such example
- For this reason, the IBIS-Verilog-A simulations are more accurate
- Note: IBIS-Verilog-A models are not limited to DFE modeling only

 What you can model is mostly limited by your imagination and
 programming experience only

Is the slower simulation time a problem?

DDR designs may not need multi-million bit simulations

- DDR and SerDes protocols are different
- SerDes channels are unidirectional and can have very long bit streams
- DDR channels are bi-directional, and the length of a bit stream is limited by alternating read/write cycles
- DDR channels tend to have more non-LTI related challenges which need to be studied by simulations

IBIS-Verilog-A models may be reasonably fast for DDR simulations

— They are definitely many orders of magnitudes faster than full transistor level SPICE models $\textcircled{\columnwidth{\odot}}$

How about Intellectual Property protection?

- It is commonly believed that Verilog-A models cannot be encrypted
 - I was under that impression too until a few weeks ago...
 - It turns out that most major EDA vendors can generate and use encrypted Verilog-A models
 - Encrypted versions of the models used in this presentation have been tested successfully in two EDA tools
- To make the model maker's life easier, it would be useful to have an industry wide common encryption mechanism
 - The Accellera P1735 effort addressed that, but a team from the University of Florida found security flaws in it
 - Need to investigate whether these problems are addressed
 - Need to investigate what, if anything, the IBIS Open Forum needs to do in order to use it in IBIS contexts

A Siemens Business

www.mentor.com