DDR5 Rx
Clock-Forwarding Investigation

Stephen Slater
SI & PI Product Manager – Keysight EEsof EDA

IBIS Summit 2019 @DesignCon
Santa Clara Convention Center, CA
Why Do We Care About Clock-Forwarding?

- Unlike SerDes channels, DDR transmission lines are not terminated in a matched-impedance (e.g. 50 Ohms)
- Increasing Inter-symbol interference (ISI) at DDR5 speeds requires the inclusion of multiple-tap DFE within both controllers and DRAM for the first time
- In SerDes systems, the DFE is clocked by a CDR...but in DDR5 the DFE is clocked by the external Data Strobe signal (DQS)
- 1 DQS is provided per byte (8x DQ) or per nibble (4x DQ)
- The DFE in the DRAM is not expected to be adaptive, so we expect a list fixed taps selections
- There can be internal delays within the IC that may offer a variation in exact timing instant of the strobe to the DFE block (up to 10ps?) Not Jitter- it is a fixed delay
Why Do We Care About Clock-Forwarding?

- IBIS-ATM has ongoing discussions regarding the use of Clock times output from a DQS Rx AMI model & pass those as an input to a DQ Rx AMI model.
- However, it ignores internal delays.
- In addition, in the Rx architecture on the Controller side, they can make use of an Interpolator on the strobe signal, to fine tune the timing instant that is optimal for all DQ signals.

Q: How Does the Timing Instant Impact the Eye?
First we need a Channel

A SERVER CASE STUDY EXAMPLE

1Rank – DIMM1

1Rank – DIMM0
Assumptions for Extending the Testbench to DDR5

TACKLING THE COMPLEXITY OF DDR

DDR5 is not a ratified standard yet. Many specifics will have to be assumed until more is known. Make any assumptions a simulation variable now, so that it is easy to modify and re-run at a later time with new inputs. Assumptions for this investigation:

- **Rise time** and **fall time** for the Memory Controller IP will be **2x faster** than at 2400Mbps.
 - Can this be taken for given?

- **Jitter** will be the same as DDR4 or better than DDR4

- **Rx Mask limits** will not change linearly with Speed Grade. If it’s 120mV and 0.22 UI for 2666Mbps
 - Can we be safe with 80mV and 0.25 UI for DDR5 @4800Mbps?

Each assumption is author’s guess and not based upon knowledge of JEDEC discussions.
Memory Controller Model for CPU – Represented by Tx sources with the following parameters specified:

- Drive Strength (A load in Ohms)
- RJ
- DJ
- Cdie
- ODT value
- RiseTime
- FallTime

DRAM Models – Represented by a DDR5 preliminary IBIS model, and DQ_Rx block providing 4-tap optimized DFE
First Simulation Result for 1r1r Configuration

CLOSE BUT FAILS RX MASK @ BER OF 1E-16

Simulator returned these Optimized Tap Values:
-0.0251 -0.0015 0.0021 -0.0076
Exporting the Channel

• Ideal scenario is to export the step response of the combined channel (including the IBIS models with the correct ODTs selected)

• Step response can be imported to a DSP simulation as a special ‘Timed FIR’ filter – where the step response is resampled and converted to a an impulse response.

• Alternatively export S-parameters – difficulty with this method is that the S-parameter testbenches like to have same port impedances at both sides (not ideal for DDR cases), and effects of the analog part of the IBIS model (their loading on the channel) are discounted.
Move from System Simulation – to DSP domain

TO CONTINUE THE INVESTIGATION
Simulator Returned Optimized Tap Values:
- 0.0251
- 0.0015
- 0.0021
- 0.0076

Decision Feedback Equalizer

Adjust Sampling Instant

4 Tap DFE and Scaler
Now in a Data Flow Simulation—
Output Eye – Nominal

Nominal Strobe Timing

SNR 3.67
Eye Height 51.7 mV
Eye Width 96.7 ps

Allow 4-tap DFE to adapt to find base-line EQ taps, then fix the values for the next cases.
Late Strobe w/Fixed Taps

Strobe 2 samples late (+13ps)

SNR 3.7
Eye Height 53.4 mV
Eye Width 97.25 ps

Fixed Taps – result is a little better
Early Strobe w/Fixed Taps

Strobe 2 samples early (-13ps)

SNR 3.64
Eye Height 49.9 mV
Eye Width 97.55 ps

Fixed Taps – result is a little worse than baseline
Surprising! I expected much greater deviation

What if we can optimize both tap values and strobe timing?
Strobe 4 samples later (+26ps)

SNR 3.89
Eye Height 64.4 mV
Eye Width 110.75 ps

Allow adaptive tuning

It’s better than the baseline!
Early Strobe w/Adapted Taps

Strobe 4 samples early (-26ps)

SNR 4.18
Eye Height 79.6 mV
Eye Width 111.7 ps

Allow adaptive tuning

It’s looking **MUCH** better!

30mV and 20ps more margin than baseline
Summary

• 1. Demonstrated that when taps are fixed the eye opening is not so sensitive to changes to small changes in strobe timing.

• 2. Demonstrated that there is a strong relationship between signal, clock timing and DFE tap values that the controller can exploit to optimize the link.

Since the clock signal is not We recommend that Clock waveforms be passed to the IBIS-AMI (in bit-by-bit mode) as a new additional input, to allow for such complex behavior to be modeled.